Skipping CNN Convolutions Through Efficient Memoization

被引:4
|
作者
de Moura, Rafael Fao [1 ]
Santos, Paulo C. [1 ]
de Lima, Joao Paulo C. [1 ]
Alves, Marco A. Z. [2 ]
Beck, Antonio C. S. [1 ]
Carro, Luigi [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Informat Inst, Porto Alegre, RS, Brazil
[2] Univ Fed Parana, Dept Informat, Curitiba, Parana, Brazil
关键词
Convolutional Neural Networks; Computation reuse; Memoization;
D O I
10.1007/978-3-030-27562-4_5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional Neural Networks (CNNs) have become a de-facto standard for image and video recognition. However, current software and hardware implementations targeting convolutional operations still lack embracing energy budget constraints due to the CNN intensive data processing behavior. This paper proposes a software-based memoization technique to skip entire convolution calculations. We demonstrate that, by grouping output values within proximity-based clusters, it is possible to reduce by hundreds of times the amount of memory necessary to store all the tables. Also, we present a table mapping scheme to index the input set of each convolutional layer to its output value. Our experimental results show that for a YOLOv3-tiny CNN, it is possible to achieve a speedup up to 3.5x while reducing the energy consumption to 22% of the baseline with an accuracy loss of 7.4%.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 50 条
  • [21] Temporal Memoization for Energy-Efficient Timing Error Recovery in GPGPUs
    Rahimi, Abbas
    Benini, Luca
    Gupta, Rajesh K.
    2014 DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION (DATE), 2014,
  • [22] Efficient Memoization for Approximate Function Evaluation over Sequence Arguments
    Biswas, Tamal
    Regan, Kenneth W.
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2014, 2014, 8546 : 185 - 196
  • [23] Energy-Efficient XML Stream Processing through Element-Skipping Parsing
    Amagasa, Toshiyuki
    Seino, Mana
    Kitagawa, Hiroyuki
    2013 24TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2013), 2013, : 254 - 258
  • [24] A note on efficient density estimators of convolutions
    Bandyopadhyay, Soutir
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (11) : 3056 - 3060
  • [25] Data Locality Optimization of Depthwise Separable Convolutions for CNN Inference Accelerators
    Wu, Hao-Ning
    Huang, Chih-Tsun
    2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2019, : 120 - 125
  • [26] DoubleQExt: Hardware and Memory Efficient CNN Through Two Levels of Quantization
    See, Jin-Chuan
    Ng, Hui-Fuang
    Tan, Hung-Khoon
    Chang, Jing-Jing
    Lee, Wai-Kong
    Hwang, Seong Oun
    IEEE Access, 2021, 9 : 169082 - 169091
  • [27] Efficient Matching with Memoization for Regexes with Look-around and Atomic Grouping
    Fujinami, Hiroya
    Hasuo, Ichiro
    PROGRAMMING LANGUAGES AND SYSTEMS, PT II, ESOP 2024, 2024, 14577 : 90 - 118
  • [28] DoubleQExt: Hardware and Memory Efficient CNN Through Two Levels of Quantization
    See, Jin-Chuan
    Ng, Hui-Fuang
    Tan, Hung-Khoon
    Chang, Jing-Jing
    Lee, Wai-Kong
    Hwang, Seong Oun
    IEEE ACCESS, 2021, 9 : 169082 - 169091
  • [29] Skipping strategies for efficient structural joins
    Lam, F
    Shui, WM
    Fisher, DK
    Wong, RK
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2004, 2973 : 196 - 207
  • [30] Skip-Convolutions for Efficient Video Processing
    Habibian, Amirhossein
    Abati, Davide
    Cohen, Taco S.
    Bejnordi, Babak Ehteshami
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2694 - 2703