Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naive proliferative diabetic retinopathy

被引:52
|
作者
Nagasawa, Toshihiko [1 ]
Tabuchi, Hitoshi [1 ]
Masumoto, Hiroki [1 ]
Enno, Hiroki [2 ]
Niki, Masanori [3 ]
Ohara, Zaigen [1 ]
Yoshizumi, Yuki [1 ]
Ohsugi, Hideharu [1 ]
Mitamura, Yoshinori [3 ]
机构
[1] Saneikai Tsukazaki Hosp, Dept Ophthalmol, 68-1 Aboshi Waku, Himeji, Hyogo 6711227, Japan
[2] Rist Inc, Tokyo, Japan
[3] Tokushima Univ, Grad Sch, Inst Biomed Sci, Dept Ophthalmol, Tokushima, Japan
关键词
Ultrawide-field fundus ophthalmoscopy; Proliferative diabetic retinopathy; Deep learning; Deep convolutional neural network; PERIPHERAL LESIONS; PREVALENCE; VALIDATION; IMAGES;
D O I
10.1007/s10792-019-01074-z
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PurposeWe investigated using ultrawide-field fundus images with a deep convolutional neural network (DCNN), which is a machine learning technology, to detect treatment-naive proliferative diabetic retinopathy (PDR).MethodsWe conducted training with the DCNN using 378 photographic images (132 PDR and 246 non-PDR) and constructed a deep learning model. The area under the curve (AUC), sensitivity, and specificity were examined.ResultThe constructed deep learning model demonstrated a high sensitivity of 94.7% and a high specificity of 97.2%, with an AUC of 0.969.ConclusionOur findings suggested that PDR could be diagnosed using wide-angle camera images and deep learning.
引用
收藏
页码:2153 / 2159
页数:7
相关论文
共 45 条
  • [1] Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naïve proliferative diabetic retinopathy
    Toshihiko Nagasawa
    Hitoshi Tabuchi
    Hiroki Masumoto
    Hiroki Enno
    Masanori Niki
    Zaigen Ohara
    Yuki Yoshizumi
    Hideharu Ohsugi
    Yoshinori Mitamura
    International Ophthalmology, 2019, 39 : 2153 - 2159
  • [2] Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion
    Nagasato, Daisuke
    Tabuchi, Hitoshi
    Ohsugi, Hideharu
    Masumoto, Hiroki
    Enno, Hiroki
    Ishitobi, Naofumi
    Sonobe, Tomoaki
    Kameoka, Masahiro
    Niki, Masanori
    Mitamura, Yoshinori
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2019, 12 (01) : 94 - 99
  • [3] Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion
    Daisuke Nagasato
    Hitoshi Tabuchi
    Hideharu Ohsugi
    Hiroki Masumoto
    Hiroki Enno
    Naofumi Ishitobi
    Tomoaki Sonobe
    Masahiro Kameoka
    Masanori Niki
    Yoshinori Mitamura
    International Journal of Ophthalmology, 2019, (01) : 94 - 99
  • [4] Applications of deep learning for detecting ophthalmic diseases with ultrawide-field fundus images
    Tang, Qing-Qing
    Yang, Xiang -Gang
    Wang, Hong-Qiu
    Wu, Da -Wen
    Zhang, Mei-Xia
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2024, 17 (01) : 188 - 200
  • [5] Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration
    Shinji Matsuba
    Hitoshi Tabuchi
    Hideharu Ohsugi
    Hiroki Enno
    Naofumi Ishitobi
    Hiroki Masumoto
    Yoshiaki Kiuchi
    International Ophthalmology, 2019, 39 : 1269 - 1275
  • [6] Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration
    Matsuba, Shinji
    Tabuchi, Hitoshi
    Ohsugi, Hideharu
    Enno, Hiroki
    Ishitobi, Naofumi
    Masumoto, Hiroki
    Kiuchi, Yoshiaki
    INTERNATIONAL OPHTHALMOLOGY, 2019, 39 (06) : 1269 - 1275
  • [7] Deep Neural Network-Based Method for Detecting Central Retinal Vein Occlusion Using Ultrawide-Field Fundus Ophthalmoscopy
    Nagasato, Daisuke
    Tabuchi, Hitoshi
    Ohsugi, Hideharu
    Masumoto, Hiroki
    Enno, Hiroki
    Ishitobi, Naofumi
    Sonobe, Tomoaki
    Kameoka, Masahiro
    Niki, Masanori
    Hayashi, Ken
    Mitamura, Yoshinori
    JOURNAL OF OPHTHALMOLOGY, 2018, 2018
  • [8] AUTOMATED DETECTION OF VITRITIS USING ULTRAWIDE-FIELD FUNDUS PHOTOGRAPHS AND DEEP LEARNING
    Mhibik, Bayram
    Kouadio, Desire
    Jung, Camille
    Bchir, Chemsedine
    Toutee, Adelaide
    Maestri, Federico
    Gulic, Karmen
    Miere, Alexandra
    Falcione, Alessandro
    Touati, Myriam
    Monnet, Dominique
    Bodaghi, Bahram
    Touhami, Sara
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2024, 44 (06): : 1034 - 1044
  • [9] Automated vitreous haze grading using ultrawide-field fundus photographs and deep learning
    Touhami, Sarah
    Mhibik, Bayram
    Bchir, Chemsedine
    Toutee, Adelaide
    Gulic, Karmen
    Falcione, Alessandro
    Bodaghi, Bahram
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [10] Quantifying and visualizing more features in diabetic retinopathy using ultrawide-field optical coherence tomography and deep -learning algorithms
    Guo, Yukun
    Gao, Min
    Hormel, Tristan T.
    Hwang, Thomas S.
    Jia, Yali
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)