Applications of deep learning for detecting ophthalmic diseases with ultrawide-field fundus images

被引:3
|
作者
Tang, Qing-Qing [1 ]
Yang, Xiang -Gang [1 ]
Wang, Hong-Qiu [2 ]
Wu, Da -Wen [1 ]
Zhang, Mei-Xia [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Ophthalmol & Res, Lab Macular Dis, Chengdu 610041, Sichuan, Peoples R China
[2] Hong Kong Univ Sci & Technol Guangzhou, Guangzhou 511400, Guangdong, Peoples R China
关键词
ultrawide-field fundus images; deep learning; disease diagnosis; ophthalmic disease; DIABETIC-RETINOPATHY; GLOBAL PREVALENCE; MACULAR DEGENERATION; AUTOMATED DETECTION; AGE; GLAUCOMA; CLASSIFICATION; PERFORMANCE; BURDEN;
D O I
10.18240/ijo.2024.01.24
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
AIM: To summarize the application of deep learning in detecting ophthalmic disease with ultrawide-field fundus images and analyze the advantages, limitations, and possible solutions common to all tasks. METHODS: We searched three academic databases, including PubMed, Web of Science, and Ovid, with the date of August 2022. We matched and screened according to the target keywords and publication year and retrieved a total of 4358 research papers according to the keywords, of which 23 studies were retrieved on applying deep learning in diagnosing ophthalmic disease with ultrawide-field images. RESULTS: Deep learning in ultrawide-field images can detect various ophthalmic diseases and achieve great performance, including diabetic retinopathy, glaucoma, age-related macular degeneration, retinal vein occlusions, retinal detachment, and other peripheral retinal diseases. Compared to fundus images, the ultrawide-field fundus scanning laser ophthalmoscopy enables the capture of the ocular fundus up to 200 degrees in a single exposure, which can observe more areas of the retina. CONCLUSION: The combination of ultrawide-field fundus images and artificial intelligence will achieve great performance in diagnosing multiple ophthalmic diseases in the future.
引用
收藏
页码:188 / 200
页数:13
相关论文
共 50 条
  • [1] Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion
    Nagasato, Daisuke
    Tabuchi, Hitoshi
    Ohsugi, Hideharu
    Masumoto, Hiroki
    Enno, Hiroki
    Ishitobi, Naofumi
    Sonobe, Tomoaki
    Kameoka, Masahiro
    Niki, Masanori
    Mitamura, Yoshinori
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2019, 12 (01) : 94 - 99
  • [2] Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion
    Daisuke Nagasato
    Hitoshi Tabuchi
    Hideharu Ohsugi
    Hiroki Masumoto
    Hiroki Enno
    Naofumi Ishitobi
    Tomoaki Sonobe
    Masahiro Kameoka
    Masanori Niki
    Yoshinori Mitamura
    International Journal of Ophthalmology, 2019, (01) : 94 - 99
  • [3] Automatic Detection of Peripheral Retinal Lesions From Ultrawide-Field Fundus Images Using Deep Learning
    Tang, Yi-Wen
    Ji, Jie
    Lin, Jian-Wei
    Wang, Ji
    Wang, Yun
    Liu, Zibo
    Hu, Zhanchi
    Yang, Jian-Feng
    Ng, Tsz Kin
    Zhang, Mingzhi
    Pang, Chi Pui
    Cen, Ling-Ping
    ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2023, 12 (03): : 284 - 292
  • [4] AUTOMATED DETECTION OF VITRITIS USING ULTRAWIDE-FIELD FUNDUS PHOTOGRAPHS AND DEEP LEARNING
    Mhibik, Bayram
    Kouadio, Desire
    Jung, Camille
    Bchir, Chemsedine
    Toutee, Adelaide
    Maestri, Federico
    Gulic, Karmen
    Miere, Alexandra
    Falcione, Alessandro
    Touati, Myriam
    Monnet, Dominique
    Bodaghi, Bahram
    Touhami, Sara
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2024, 44 (06): : 1034 - 1044
  • [5] Automated vitreous haze grading using ultrawide-field fundus photographs and deep learning
    Touhami, Sarah
    Mhibik, Bayram
    Bchir, Chemsedine
    Toutee, Adelaide
    Gulic, Karmen
    Falcione, Alessandro
    Bodaghi, Bahram
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [6] Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naive proliferative diabetic retinopathy
    Nagasawa, Toshihiko
    Tabuchi, Hitoshi
    Masumoto, Hiroki
    Enno, Hiroki
    Niki, Masanori
    Ohara, Zaigen
    Yoshizumi, Yuki
    Ohsugi, Hideharu
    Mitamura, Yoshinori
    INTERNATIONAL OPHTHALMOLOGY, 2019, 39 (10) : 2153 - 2159
  • [7] Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naïve proliferative diabetic retinopathy
    Toshihiko Nagasawa
    Hitoshi Tabuchi
    Hiroki Masumoto
    Hiroki Enno
    Masanori Niki
    Zaigen Ohara
    Yuki Yoshizumi
    Hideharu Ohsugi
    Yoshinori Mitamura
    International Ophthalmology, 2019, 39 : 2153 - 2159
  • [8] Classification of Fundus Images Based on Deep Learning for Detecting Eye Diseases
    Chea, Nakhim
    Nam, Yunyoung
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (01): : 411 - 426
  • [9] Toward astrometric calibration of ultrawide-field images
    Bednar, J.
    Skala, P.
    Pata, P.
    ASTRONOMISCHE NACHRICHTEN, 2018, 339 (05) : 403 - 407
  • [10] Deep Neural Network-Based Method for Detecting Central Retinal Vein Occlusion Using Ultrawide-Field Fundus Ophthalmoscopy
    Nagasato, Daisuke
    Tabuchi, Hitoshi
    Ohsugi, Hideharu
    Masumoto, Hiroki
    Enno, Hiroki
    Ishitobi, Naofumi
    Sonobe, Tomoaki
    Kameoka, Masahiro
    Niki, Masanori
    Hayashi, Ken
    Mitamura, Yoshinori
    JOURNAL OF OPHTHALMOLOGY, 2018, 2018