Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naive proliferative diabetic retinopathy

被引:52
|
作者
Nagasawa, Toshihiko [1 ]
Tabuchi, Hitoshi [1 ]
Masumoto, Hiroki [1 ]
Enno, Hiroki [2 ]
Niki, Masanori [3 ]
Ohara, Zaigen [1 ]
Yoshizumi, Yuki [1 ]
Ohsugi, Hideharu [1 ]
Mitamura, Yoshinori [3 ]
机构
[1] Saneikai Tsukazaki Hosp, Dept Ophthalmol, 68-1 Aboshi Waku, Himeji, Hyogo 6711227, Japan
[2] Rist Inc, Tokyo, Japan
[3] Tokushima Univ, Grad Sch, Inst Biomed Sci, Dept Ophthalmol, Tokushima, Japan
关键词
Ultrawide-field fundus ophthalmoscopy; Proliferative diabetic retinopathy; Deep learning; Deep convolutional neural network; PERIPHERAL LESIONS; PREVALENCE; VALIDATION; IMAGES;
D O I
10.1007/s10792-019-01074-z
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PurposeWe investigated using ultrawide-field fundus images with a deep convolutional neural network (DCNN), which is a machine learning technology, to detect treatment-naive proliferative diabetic retinopathy (PDR).MethodsWe conducted training with the DCNN using 378 photographic images (132 PDR and 246 non-PDR) and constructed a deep learning model. The area under the curve (AUC), sensitivity, and specificity were examined.ResultThe constructed deep learning model demonstrated a high sensitivity of 94.7% and a high specificity of 97.2%, with an AUC of 0.969.ConclusionOur findings suggested that PDR could be diagnosed using wide-angle camera images and deep learning.
引用
收藏
页码:2153 / 2159
页数:7
相关论文
共 45 条
  • [21] Region-specific ischemia, neovascularization and macular oedema in treatment-naive proliferative diabetic retinopathy
    Lange, Jason
    Hadziahmetovic, Majda
    Zhang, Jingfa
    Li, Weiye
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2018, 46 (07): : 757 - 766
  • [22] Accuracy of deep learning, a machine-learning technology, using ultra–wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment
    Hideharu Ohsugi
    Hitoshi Tabuchi
    Hiroki Enno
    Naofumi Ishitobi
    Scientific Reports, 7
  • [23] Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment
    Ohsugi, Hideharu
    Tabuchi, Hitoshi
    Enno, Hiroki
    Ishitobi, Naofumi
    SCIENTIFIC REPORTS, 2017, 7
  • [24] Intravitreal aflibercept partially reverses severe non-proliferative diabetic retinopathy in treatment-naive patients
    Tao, Yuan
    Jiang, Pengfei
    Liu, Min
    Liu, Ying
    Song, Lihua
    Wang, Hong
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2021, 49 (01)
  • [25] Sensitivity and specificity of pseudocolor ultrawide field imaging in comparison to wide field fundus fluorescein angiography in detecting retinal neovascularization in diabetic retinopathy
    Haridas, Swathy
    Indurkhya, Swati
    Kumar, Sailesh
    Giridhar, Anantharaman
    Sivaprasad, Sobha
    EYE, 2022, 36 (10) : 1940 - 1944
  • [26] Accuracy of Diabetic Retinopathy Staging with a Deep Convolutional Neural Network Using Ultra-Wide-Field Fundus Ophthalmoscopy and Optical Coherence Tomography Angiography
    Nagasawa, Toshihiko
    Tabuchi, Hitoshi
    Masumoto, Hiroki
    Morita, Shoji
    Niki, Masanori
    Ohara, Zaigen
    Yoshizumi, Yuki
    Mitamura, Yoshinori
    JOURNAL OF OPHTHALMOLOGY, 2021, 2021
  • [27] Sensitivity and specificity of pseudocolor ultrawide field imaging in comparison to wide field fundus fluorescein angiography in detecting retinal neovascularization in diabetic retinopathy
    Swathy Haridas
    Swati Indurkhya
    Sailesh Kumar
    Anantharaman Giridhar
    Sobha Sivaprasad
    Eye, 2022, 36 : 1940 - 1944
  • [28] Validation of the Siva-Plus Deep-Learning Algorithm on Retinal Vascular Calibre in Patients with Treatment-Naive Proliferative Diabetic Retinopathy Before and After Panretinal Photocoagulation
    Torp, T. L.
    Cheung, C. Y. L.
    Kawasaki, R.
    Peto, T.
    Wong, T. Y.
    Grauslund, J.
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2020, 30 (1_SUPPL) : 24 - 25
  • [29] Blood vessel segmentation in retinal fundus images for proliferative diabetic retinopathy screening using deep learning
    Saranya, P.
    Prabakaran, S.
    Kumar, Rahul
    Das, Eshani
    VISUAL COMPUTER, 2022, 38 (03): : 977 - 992
  • [30] Blood vessel segmentation in retinal fundus images for proliferative diabetic retinopathy screening using deep learning
    P. Saranya
    S. Prabakaran
    Rahul Kumar
    Eshani Das
    The Visual Computer, 2022, 38 : 977 - 992