Non-convex sweeping processes involving maximal monotone operators

被引:6
|
作者
Adly, Samir [1 ]
Le, Ba Khiet [2 ]
机构
[1] Univ Limoges, XLIM UMR CNRS 7252, Limoges, France
[2] Univ Chile, CMM, Santiago, Chile
关键词
Sweeping process; differential inclusion; variational analysis; maximal monotone operator; non-smooth Lyapunov pairs; PROX-REGULAR SETS; VARIATIONAL-INEQUALITIES; DIFFERENTIAL-INCLUSIONS;
D O I
10.1080/02331934.2017.1337765
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
By using a regularization method, we study in this paper the global existence and uniqueness property of a new variant of non-convex sweeping processes involving maximal monotone operators. The system can be considered as a maximal monotone differential inclusion under a control term of normal cone type forcing the trajectory to be always contained in the desired moving set. When the set is fixed, one can show that the unique solution is right-differentiable everywhere and its right-derivative is right-continuous. Non-smooth Lyapunov pairs for this system are also analysed.
引用
收藏
页码:1465 / 1486
页数:22
相关论文
共 50 条
  • [31] A Characterization of Maximal Monotone Operators
    Loehne, Andreas
    SET-VALUED ANALYSIS, 2008, 16 (5-6): : 693 - 700
  • [32] On the convergence of maximal monotone operators
    Penot, JP
    Alinescu, CZ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (07) : 1937 - 1946
  • [33] Regular maximal monotone operators
    Verona, A
    Verona, ME
    SET-VALUED ANALYSIS, 1998, 6 (03): : 303 - 312
  • [34] A Characterization of Maximal Monotone Operators
    Andreas Löhne
    Set-Valued Analysis, 2008, 16 : 693 - 700
  • [35] IMAGE OF MAXIMAL MONOTONE OPERATORS
    BROWDER, FE
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (10): : 755 - 757
  • [36] Fractional Evolution Inclusion Involving Time-Dependent Maximal Monotone Operators
    C. Castaing
    C. Godet-Thobie
    S. Saïdi
    Siberian Mathematical Journal, 2025, 66 (2) : 423 - 485
  • [37] Maximal Averages over Certain Non-smooth and Non-convex Hypersurfaces
    Heo, Yaryong
    Hong, Sunggeum
    Yang, Chan Woo
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1383 - 1401
  • [38] Greedy and IHT Algorithms for Non-convex Optimization with Monotone Costs of Non-zeros
    Sakaue, Shinsaku
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 206 - 215
  • [39] θ-MONOTONE OPERATORS AND θ-CONVEX FUNCTIONS
    Laszlo, Szilard
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 733 - 759
  • [40] Geometric Properties of Maximal Monotone Operators and Convex Functions which May Represent Them
    Svaiter, B. F.
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (02) : 553 - 569