Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems

被引:267
|
作者
Tang, Ming [1 ]
Wong, Vincent W. S. [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Task analysis; Mobile handsets; Delays; Heuristic algorithms; Mobile computing; Edge computing; Distributed algorithms; Mobile edge computing; computation offloading; resource allocation; deep reinforcement learning; deep Q-learning; RESOURCE-ALLOCATION; NETWORKS;
D O I
10.1109/TMC.2020.3036871
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In mobile edge computing systems, an edge node may have a high load when a large number of mobile devices offload their tasks to it. Those offloaded tasks may experience large processing delay or even be dropped when their deadlines expire. Due to the uncertain load dynamics at the edge nodes, it is challenging for each device to determine its offloading decision (i.e., whether to offload or not, and which edge node it should offload its task to) in a decentralized manner. In this work, we consider non-divisible and delay-sensitive tasks as well as edge load dynamics, and formulate a task offloading problem to minimize the expected long-term cost. We propose a model-free deep reinforcement learning-based distributed algorithm, where each device can determine its offloading decision without knowing the task models and offloading decision of other devices. To improve the estimation of the long-term cost in the algorithm, we incorporate the long short-term memory (LSTM), dueling deep Q-network (DQN), and double-DQN techniques. Simulation results show that our proposed algorithm can better exploit the processing capacities of the edge nodes and significantly reduce the ratio of dropped tasks and average delay when compared with several existing algorithms.
引用
收藏
页码:1985 / 1997
页数:13
相关论文
共 50 条
  • [41] Task offloading mechanism based on federated reinforcement learning in mobile edge computing
    Jie Li
    Zhiping Yang
    Xingwei Wang
    Yichao Xia
    Shijian Ni
    Digital Communications and Networks, 2023, 9 (02) : 492 - 504
  • [42] Deep Reinforcement Learning for Task Offloading in Edge Computing Assisted Power IoT
    Hu, Jiangyi
    Li, Yang
    Zhao, Gaofeng
    Xu, Bo
    Ni, Yiyang
    Zhao, Haitao
    IEEE ACCESS, 2021, 9 : 93892 - 93901
  • [43] Adaptive Task Offloading in Coded Edge Computing: A Deep Reinforcement Learning Approach
    Nguyen Van Tam
    Nguyen Quang Hieu
    Nguyen Thi Thanh Van
    Nguyen Cong Luong
    Niyato, Dusit
    Kim, Dong In
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3878 - 3882
  • [44] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [45] Task offloading of edge computing network based on Lyapunov and deep reinforcement learning
    Qiao, Xudong
    Zhou, Yongxin
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1054 - 1059
  • [46] Prioritized Task Offloading in Vehicular Edge Computing Using Deep Reinforcement Learning
    Uddin, Ashab
    Sakr, Ahmed Hamdi
    Zhang, Ning
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [47] Dependent Task Offloading in Edge Computing Using GNN and Deep Reinforcement Learning
    Cao, Zequn
    Deng, Xiaoheng
    Yue, Sheng
    Jiang, Ping
    Ren, Ju
    Gui, Jinsong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 21632 - 21646
  • [48] Multiple Workflows Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Gao, Yongqiang
    Wang, Yanping
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I, 2022, 13155 : 476 - 493
  • [49] Maritime mobile edge computing offloading method based on deep reinforcement learning
    Su X.
    Meng L.
    Zhou Y.
    Celimuge W.
    Tongxin Xuebao/Journal on Communications, 2022, 43 (10): : 133 - 145
  • [50] A Deep Reinforcement Learning Approach Towards Computation Offloading for Mobile Edge Computing
    Wang, Qing
    Tan, Wenan
    Qin, Xiaofan
    HUMAN CENTERED COMPUTING, 2019, 11956 : 419 - 430