Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems

被引:267
|
作者
Tang, Ming [1 ]
Wong, Vincent W. S. [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Task analysis; Mobile handsets; Delays; Heuristic algorithms; Mobile computing; Edge computing; Distributed algorithms; Mobile edge computing; computation offloading; resource allocation; deep reinforcement learning; deep Q-learning; RESOURCE-ALLOCATION; NETWORKS;
D O I
10.1109/TMC.2020.3036871
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In mobile edge computing systems, an edge node may have a high load when a large number of mobile devices offload their tasks to it. Those offloaded tasks may experience large processing delay or even be dropped when their deadlines expire. Due to the uncertain load dynamics at the edge nodes, it is challenging for each device to determine its offloading decision (i.e., whether to offload or not, and which edge node it should offload its task to) in a decentralized manner. In this work, we consider non-divisible and delay-sensitive tasks as well as edge load dynamics, and formulate a task offloading problem to minimize the expected long-term cost. We propose a model-free deep reinforcement learning-based distributed algorithm, where each device can determine its offloading decision without knowing the task models and offloading decision of other devices. To improve the estimation of the long-term cost in the algorithm, we incorporate the long short-term memory (LSTM), dueling deep Q-network (DQN), and double-DQN techniques. Simulation results show that our proposed algorithm can better exploit the processing capacities of the edge nodes and significantly reduce the ratio of dropped tasks and average delay when compared with several existing algorithms.
引用
收藏
页码:1985 / 1997
页数:13
相关论文
共 50 条
  • [21] Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing With Deep Reinforcement Learning
    Samy, Ahmed
    Elgendy, Ibrahim A.
    Yu, Haining
    Zhang, Weizhe
    Zhang, Hongli
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4872 - 4887
  • [22] Joint DNN partitioning and task offloading in mobile edge computing via deep reinforcement learning
    Zhang, Jianbing
    Ma, Shufang
    Yan, Zexiao
    Huang, Jiwei
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2023, 12 (01):
  • [23] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [24] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [25] Mobile-Aware Online Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing Networks
    Li, Yuting
    Liu, Yitong
    Liu, Xingcheng
    Tu, Qiang
    Xie, Yi
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [26] Deep reinforcement learning for computation offloading in mobile edge computing environment
    Chen, Miaojiang
    Wang, Tian
    Zhang, Shaobo
    Liu, Anfeng
    COMPUTER COMMUNICATIONS, 2021, 175 (175) : 1 - 12
  • [27] A Computing Offloading Resource Allocation Scheme Using Deep Reinforcement Learning in Mobile Edge Computing Systems
    Xuezhu Li
    Journal of Grid Computing, 2021, 19
  • [28] A Computing Offloading Resource Allocation Scheme Using Deep Reinforcement Learning in Mobile Edge Computing Systems
    Li, Xuezhu
    JOURNAL OF GRID COMPUTING, 2021, 19 (03)
  • [29] Task offloading based on deep learning for blockchain in mobile edge computing
    Chung-Hua Chu
    Wireless Networks, 2021, 27 : 117 - 127
  • [30] Task offloading based on deep learning for blockchain in mobile edge computing
    Chu, Chung-Hua
    WIRELESS NETWORKS, 2021, 27 (01) : 117 - 127