Local likelihood for non-parametric ARCH(1) models

被引:8
|
作者
Audrino, F [1 ]
机构
[1] Univ Lugano, Lugano, Switzerland
关键词
return time series; volatility; ARCH model; local likelihood; kernel regression smoothing;
D O I
10.1111/j.1467-9892.2005.00400.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a non-parametric local likelihood estimator for the log-transformed autoregressive conditional heteroscedastic (ARCH) (1) model. Our non-parametric estimator is constructed within the likelihood framework for non-Gaussian observations: it is different from standard kernel regression smoothing, where the innovations are assumed to be normally distributed. We derive consistency and asymptotic normality for our estimators and show, by a simulation experiment and some real-data examples, that the local likelihood estimator has better predictive potential than classical local regression. A possible extension of the estimation procedure to more general multiplicative ARCH(p) models with p > 1 predictor variables is also described.
引用
收藏
页码:251 / 278
页数:28
相关论文
共 50 条
  • [31] Statistical diagnosis for non-parametric regression models with random right censorship based on the empirical likelihood method
    Wang, Shuling
    Wang, Xiaoyan
    Dai, Jiangtao
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) : 1367 - 1373
  • [32] Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models
    Wey, Andrew
    Connett, John
    Rudser, Kyle
    BIOSTATISTICS, 2015, 16 (03) : 537 - 549
  • [33] Structure learning via non-parametric factorized joint likelihood function
    Naeem, Muhammad
    Asghar, Sohail
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (03) : 1589 - 1599
  • [34] Maximum likelihood and non-parametric methods for estimating trawl footrope selectivity
    Munro, PT
    Somerton, DA
    ICES JOURNAL OF MARINE SCIENCE, 2001, 58 (01) : 220 - 229
  • [35] Non-parametric likelihood based channel estimator for Gaussian mixture noise
    Bhatia, Vimal
    Mulgrew, Bernard
    SIGNAL PROCESSING, 2007, 87 (11) : 2569 - 2586
  • [36] A non-parametric maximum likelihood estimator for bivariate interval censored data
    Betensky, RA
    Finkelstein, DM
    STATISTICS IN MEDICINE, 1999, 18 (22) : 3089 - 3100
  • [37] Software Reliability Assessment via Non-Parametric Maximum Likelihood Estimation
    Saito, Yasuhiro
    Dohi, Tadashi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (10): : 2042 - 2050
  • [38] LANDUSE/LANDCOVER CLASSIFICATION BY NON-PARAMETRIC ALGORITHMS COMPARED TO THE LIKELIHOOD CLASSIFIER
    Correa e Castro da Costa, Thomaz
    De Marco Junior, Paulo
    Brites, Ricardo Seixas
    BOLETIM PARANAENSE DE GEOCIENCIAS, 2005, 56 : 65 - 87
  • [39] A necessary and sufficient condition for justifying non-parametric likelihood with censored data
    Yu, Qiqing
    Hsu, Yuting
    Yu, Kai
    METRIKA, 2014, 77 (08) : 995 - 1011
  • [40] A necessary and sufficient condition for justifying non-parametric likelihood with censored data
    Qiqing Yu
    Yuting Hsu
    Kai Yu
    Metrika, 2014, 77 : 995 - 1011