Consecutive patterns in permutations

被引:93
|
作者
Elizalde, S
Noy, M
机构
[1] Univ Politecn Catalunya, Dept Matemat Aplicada 2, Barcelona 08028, Spain
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1016/S0196-8858(02)00527-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the distribution of the number of occurrences of a permutation Q as a subword among all permutations in S-n. We solve the problem in several cases depending on the shape of sigma by obtaining the corresponding bivariate exponential generating functions as solutions of certain linear differential equations with polynomial coefficients. Our method is based on the representation of permutations as increasing binary trees and on symbolic methods. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:110 / 125
页数:16
相关论文
共 50 条
  • [41] Symmetric Permutations Avoiding Two Patterns
    Lonoff, David
    Ostroff, Jonah
    ANNALS OF COMBINATORICS, 2010, 14 (01) : 143 - 158
  • [42] On consecutive pattern avoiding permutations of length 4, 5 and beyond
    Beaton, Nicholas R.
    Conway, Andrew R.
    Guttmannl, Nthony J.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (01):
  • [43] (a, b)-rectangle patterns in permutations and words
    Kitaev, Sergey
    Remmel, Jeffrey
    DISCRETE APPLIED MATHEMATICS, 2015, 186 : 128 - 146
  • [44] On consecutive pattern avoiding permutations of length 4, 5 and beyond
    Beaton, Nicholas R.
    Conway, Andrew R.
    Guttmann, Anthony J.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 19 (02):
  • [45] Partial permutations avoiding pairs of patterns
    Arbesfeld, Noah
    DISCRETE MATHEMATICS, 2013, 313 (22) : 2614 - 2625
  • [46] Symmetric Permutations Avoiding Two Patterns
    David Lonoff
    Jonah Ostroff
    Annals of Combinatorics, 2010, 14 : 143 - 158
  • [47] PATTERNS OF RELATIVE MAXIMA IN RANDOM PERMUTATIONS
    BRUSS, FT
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1984, 98 (01): : 19 - 28
  • [48] Permutations containing and avoiding certain patterns
    Mansour, T
    FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 705 - 708
  • [49] Teaching permutations through rhythm patterns
    Fenton, William E.
    JOURNAL OF MATHEMATICS AND THE ARTS, 2009, 3 (03) : 143 - 146
  • [50] Minimal overlapping patterns in colored permutations
    Duane, Adrian
    Remmel, Jeffrey
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (02):