Permutations containing and avoiding certain patterns

被引:0
|
作者
Mansour, T [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-k(m) = {sigma is an element of S-k \ sigma(1) = m}. We prove that the number of permutations which avoid all patterns in T-k(m) equals (k - 2)!(k - 1)(n+1-k) for k less than or equal to n. We then prove that for any tau is an element of T-k(1) (or any tau is an element of T-k(k)), the number of permutations which avoid all patterns in T-k(1) (or in T-k(k)) except for tau and contain tau exactly once equals (n+1-k)(k-1)(n-k) for k less than or equal to n. Finally, for any tau is an element of T-k(m), 2 less than or equal to m less than or equal to k - 1, this number equals (k - 1)(n-k) for k less than or equal to n. These results generalize recent results due to Robertson concerning permutations avoiding 123-pattern and containing 132-pattern exactly once.
引用
收藏
页码:705 / 708
页数:4
相关论文
共 50 条
  • [1] Coloured Permutations Containing and Avoiding Certain Patterns
    Toufik Mansour
    Annals of Combinatorics, 2003, 7 (3) : 349 - 355
  • [2] Permutations Avoiding Certain Partially-ordered Patterns
    Yap, Kai Ting Keshia
    Wehlau, David
    Zaguia, Imed
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [3] Permutations avoiding certain patterns: The case of length 4 and some generalizations
    Bona, M
    DISCRETE MATHEMATICS, 1997, 175 (1-3) : 55 - 67
  • [4] Enumeration of Dumont permutations avoiding certain four-letter patterns
    Burstein, Alexander
    Jones, Opel
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 22 (02):
  • [5] Avoiding patterns in irreducible permutations
    Baril, Jean-Luc
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2016, 17 (03): : 13 - 30
  • [6] Avoiding consecutive patterns in permutations
    Aldred, R. E. L.
    Atkinson, M. D.
    McCaughan, D. J.
    ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (03) : 449 - 461
  • [7] Symmetric Permutations Avoiding Two Patterns
    Lonoff, David
    Ostroff, Jonah
    ANNALS OF COMBINATORICS, 2010, 14 (01) : 143 - 158
  • [8] Partial permutations avoiding pairs of patterns
    Arbesfeld, Noah
    DISCRETE MATHEMATICS, 2013, 313 (22) : 2614 - 2625
  • [9] Permutations avoiding consecutive patterns, II
    Warlimont, R
    ARCHIV DER MATHEMATIK, 2005, 84 (06) : 496 - 502
  • [10] Permutations avoiding consecutive patterns, II
    Richard Warlimont
    Archiv der Mathematik, 2005, 84 : 496 - 502