Let
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ s^{(r)}_{n} $$
\end{document}
be the set of all coloured permutations on the symbols 1, 2, . . . , n
with colours 1, 2, . . . , r, which is the analogous of the
symmetric group when r = 1, and the hyperoctahedral
group when r = 2. Let
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ I \subseteq \{1,2,\ldots,r\} $$
\end{document}
be a subset of d colours; we define
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ T_{k,r}^m (l) $$
\end{document}
to be the set of all coloured permutations
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \Phi \in S_{k}^{(r)} \quad \mathrm{such\quad that}\quad \Phi_1 =
M^{(c)} \quad \mathrm{where}\quad c \in I$$
\end{document}.
We prove that the number of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ T_{k,r}^{m} (l) $$
\end{document}
-avoiding coloured permutations in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ S_{n}^{(r)} \quad \mathrm{equals}\quad (k-1)!r^{k-1}
\prod_{j=k}^n h_j \quad \mathrm{for}\quad n\geq k \quad
\mathrm{where} \quad h_j = (r-d) j+(k-1)d $$
\end{document}.
We then prove that for any
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \Phi \in T_{k,r}^{1} (I) \quad(\mathrm{or \quad any}\quad \Phi \in
T_{k,r}^{k} (I)) $$
\end{document},
the number of coloured permutations in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ S-{n}^{(r)} $$
\end{document}
which avoid all patterns in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ T_{k,r}^{1} (I) \quad(\mathrm{or \quad in}\quad T_{k,r}^{k} (I)) $$
\end{document}
except for Φ and contain Φ exactly once equals
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \prod_{j=k}^n h_j \cdot \sum_{j=k}^{n} \frac{1}{hj \quad}
\mathrm{for}\quad n \geq k $$
\end{document}.
Finally, for any
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \Phi \in T_{k,r}^{m} (I), 2\leq m \leq k-1 $$
\end{document},
this number equals
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \prod_{j=k+1}^{n} h_j \quad \mathrm{for} \quad n\geq k+1 $$
\end{document}.
These results generalize recent results due to Mansour, Mansour and West, and Simion.