共 50 条
Primitivity of unital full free products of residually finite dimensional C*-algebras
被引:3
|作者:
Dykema, Ken
[1
]
Torres-Ayala, Francisco
[2
]
机构:
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] UNAM Campus Juriguilla, Inst Matemat, Santiago De Queretaro, Mexico
基金:
美国国家科学基金会;
关键词:
Primitive C*-algebra;
Full free product;
D O I:
10.1016/j.jfa.2014.07.022
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A C*-algebra is called primitive if it admits a faithful and irreducible *-representation. We show that if A(1) and A(2) are separable, unital, residually finite dimensional C*-algebras satisfying (dim(A(1)) - 1)(dim(A(2)) - 1) >= 2, then the unital C*-algebra full free product, A = A(1) * A(2) is primitive. It follows that A is antiliminal, it has an uncountable family of pairwise inequivalent irreducible faithful *-representations and the set of pure states is w*-dense in the state space. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4519 / 4558
页数:40
相关论文