Primitivity of unital full free products of residually finite dimensional C*-algebras

被引:3
|
作者
Dykema, Ken [1 ]
Torres-Ayala, Francisco [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] UNAM Campus Juriguilla, Inst Matemat, Santiago De Queretaro, Mexico
基金
美国国家科学基金会;
关键词
Primitive C*-algebra; Full free product;
D O I
10.1016/j.jfa.2014.07.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A C*-algebra is called primitive if it admits a faithful and irreducible *-representation. We show that if A(1) and A(2) are separable, unital, residually finite dimensional C*-algebras satisfying (dim(A(1)) - 1)(dim(A(2)) - 1) >= 2, then the unital C*-algebra full free product, A = A(1) * A(2) is primitive. It follows that A is antiliminal, it has an uncountable family of pairwise inequivalent irreducible faithful *-representations and the set of pure states is w*-dense in the state space. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4519 / 4558
页数:40
相关论文
共 50 条