An axiomatization of the Nash equilibrium concept

被引:0
|
作者
Voorneveld, Mark [1 ]
机构
[1] Stockholm Sch Econ, Dept Econ, Box 6501, S-11383 Stockholm, Sweden
关键词
Nash equilibrium; Axiomatization; Solution concept; GAMES;
D O I
10.1016/j.geb.2019.07.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
For strategic games, the Nash equilibrium concept is axiomatized using three properties: (i) if the difference between two games is 'strategically irrelevant', then their solutions are the same; (ii) if a player has a strategy with a constant payoff, this player need not settle for less in any solution of the game; (iii) if all players agree that a certain strategy profile is optimal, then this strategy profile is a solution of the game. (C) 2019 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:316 / 321
页数:6
相关论文
共 50 条
  • [41] NASH EQUILIBRIUM WITH STRATEGIC COMPLEMENTARITIES
    VIVES, X
    JOURNAL OF MATHEMATICAL ECONOMICS, 1990, 19 (03) : 305 - 321
  • [42] Nash Equilibrium Problems of Polynomials
    Nie, Jiawang
    Tang, Xindong
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (02) : 1 - 26
  • [43] Nash equilibrium in discontinuous games
    Reny, Philip J.
    ECONOMIC THEORY, 2016, 61 (03) : 553 - 569
  • [44] Nash equilibrium and evolution by imitation
    Bjornerstedt, J
    Weibull, JW
    RATIONAL FOUNDATIONS OF ECONOMIC BEHAVIOUR, 1996, : 155 - 171
  • [45] Implementation in mixed Nash equilibrium
    Mezzetti, Claudio
    Renou, Ludovic
    JOURNAL OF ECONOMIC THEORY, 2012, 147 (06) : 2357 - 2375
  • [46] NONINFERIORITY OF NASH EQUILIBRIUM SOLUTIONS
    REKASIUS, ZV
    SCHMITENDORF, WE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (02) : 170 - +
  • [47] NASH EQUILIBRIUM AND BISIMULATION INVARIANCE
    Gutierrez, Julian
    Harrenstein, Paul
    Perelli, Giuseppe
    Wooldridge, Michael
    LOGICAL METHODS IN COMPUTER SCIENCE, 2019, 15 (03)
  • [48] WEAK LOCAL NASH EQUILIBRIUM
    Biasi, Carlos
    Mendes Monis, Thais Fernanda
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 41 (02) : 409 - 419
  • [49] Generalized Nash Equilibrium Problems
    Francisco Facchinei
    Christian Kanzow
    Annals of Operations Research, 2010, 175 : 177 - 211
  • [50] PURE STRATEGY NASH EQUILIBRIUM
    GURVICH, VA
    DOKLADY AKADEMII NAUK SSSR, 1988, 303 (04): : 789 - 793