Electret Nanogenerators for Self-Powered, Flexible Electronic Pianos

被引:1
|
作者
Xiao, Yongjun [1 ]
Guo, Chao [2 ]
Zeng, Qingdong [1 ]
Xiong, Zenggang [1 ]
Ge, Yunwang [2 ]
Chen, Wenqing [2 ]
Wan, Jun [3 ,4 ]
Wang, Bo [2 ]
机构
[1] Hubei Engn Univ, Sch Phys & Elect Informat Engn, Xiaogan 432000, Peoples R China
[2] Luoyang Inst Sci & Technol, Sch Elect Engn & Automat, Luoyang 471023, Peoples R China
[3] Wuhan Text Univ, State Key Lab Hubei New Text Mat & Adv Proc Techn, Wuhan 430200, Peoples R China
[4] Wuhan Text Univ, Sch Chem & Chem Engn, Hubei Key Lab Biomass Fiber & Ecol Dyeing & Finis, Wuhan 430200, Peoples R China
基金
中国国家自然科学基金;
关键词
electret; nanogenerator; self-powered; flexible; electronic piano;
D O I
10.3390/su13084142
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traditional electronic pianos mostly adopt a gantry type and a large number of rigid keys, and most keyboard sensors of the electronic piano require additional power supply during playing, which poses certain challenges for portable electronic products. Here, we demonstrated a fluorinated ethylene propylene (FEP)-based electret nanogenerator (ENG), and the output electrical performances of the ENG under different external pressures and frequencies were systematically characterized. At a fixed frequency of 4 Hz and force of 4 N with a matched load resistance of 200 M omega, an output power density of 20.6 mW/cm(2) could be achieved. Though the implementation of a signal processing circuit, ENG-based, self-powered pressure sensors have been demonstrated for self-powered, flexible electronic pianos. This work provides a new strategy for electret nanogenerators for self-powered sensor networks and portable electronics.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Toward self-powered photodetection enabled by triboelectric nanogenerators
    Wen, Zhen
    Fu, Jingjing
    Han, Lei
    Liu, Yina
    Peng, Mingfa
    Zheng, Li
    Zhu, Yuyan
    Sun, Xuhui
    Zi, Yunlong
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (44) : 11893 - 11902
  • [42] Self-powered environmental sensor system driven by nanogenerators
    Lee, Minbaek
    Bae, Joonho
    Lee, Joohyung
    Lee, Churl-Seung
    Hong, Seunghun
    Wang, Zhong Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3359 - 3363
  • [43] Self-powered systems by nanogenerators and smart MEMS by piezotronics
    Wang Zhong Lin1
    2.Beijing Institute of Nanoenergy and Nanosystems
    EngineeringSciences, 2012, 10 (05) : 2 - 7
  • [44] High Performance Triboelectric Nanogenerators for Self-Powered Electronics
    Baik, Jeong Min
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019, : 40 - 40
  • [45] Innovative Technology for Self-Powered Sensors: Triboelectric Nanogenerators
    Wang, Nannan
    Liu, Yupeng
    Ye, Enyi
    Li, Zibiao
    Wang, Daoai
    ADVANCED SENSOR RESEARCH, 2023, 2 (05):
  • [46] Progress in triboelectric nanogenerators as self-powered smart sensors
    Nannan Zhang
    Changyuan Tao
    Xing Fan
    Jun Chen
    Journal of Materials Research, 2017, 32 : 1628 - 1646
  • [47] Implantable Triboelectric Nanogenerators for Self-Powered Cardiovascular Healthcare
    Che, Ziyuan
    O'Donovan, Sarah
    Xiao, Xiao
    Wan, Xiao
    Chen, Guorui
    Zhao, Xun
    Zhou, Yihao
    Yin, Junyi
    Chen, Jun
    SMALL, 2023, 19 (51)
  • [48] Self-powered technology based on nanogenerators for biomedical applications
    Zhang, Yuanzheng
    Gao, Xiangyang
    Wu, Yonghui
    Gui, Jinzheng
    Guo, Shishang
    Zheng, Haiwu
    Wang, Zhong Lin
    EXPLORATION, 2021, 1 (01): : 90 - 114
  • [49] Self-powered electroporation technologies based on triboelectric nanogenerators
    Liu, Yitong
    Wang, Peng
    Wang, Congyu
    Yao, Shengxun
    Zhang, Dun
    NANO ENERGY, 2024, 123
  • [50] Progress in triboelectric nanogenerators as self-powered smart sensors
    Zhang, Nannan
    Tao, Changyuan
    Fan, Xing
    Chen, Jun
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (09) : 1628 - 1646