Electret Nanogenerators for Self-Powered, Flexible Electronic Pianos

被引:1
|
作者
Xiao, Yongjun [1 ]
Guo, Chao [2 ]
Zeng, Qingdong [1 ]
Xiong, Zenggang [1 ]
Ge, Yunwang [2 ]
Chen, Wenqing [2 ]
Wan, Jun [3 ,4 ]
Wang, Bo [2 ]
机构
[1] Hubei Engn Univ, Sch Phys & Elect Informat Engn, Xiaogan 432000, Peoples R China
[2] Luoyang Inst Sci & Technol, Sch Elect Engn & Automat, Luoyang 471023, Peoples R China
[3] Wuhan Text Univ, State Key Lab Hubei New Text Mat & Adv Proc Techn, Wuhan 430200, Peoples R China
[4] Wuhan Text Univ, Sch Chem & Chem Engn, Hubei Key Lab Biomass Fiber & Ecol Dyeing & Finis, Wuhan 430200, Peoples R China
基金
中国国家自然科学基金;
关键词
electret; nanogenerator; self-powered; flexible; electronic piano;
D O I
10.3390/su13084142
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traditional electronic pianos mostly adopt a gantry type and a large number of rigid keys, and most keyboard sensors of the electronic piano require additional power supply during playing, which poses certain challenges for portable electronic products. Here, we demonstrated a fluorinated ethylene propylene (FEP)-based electret nanogenerator (ENG), and the output electrical performances of the ENG under different external pressures and frequencies were systematically characterized. At a fixed frequency of 4 Hz and force of 4 N with a matched load resistance of 200 M omega, an output power density of 20.6 mW/cm(2) could be achieved. Though the implementation of a signal processing circuit, ENG-based, self-powered pressure sensors have been demonstrated for self-powered, flexible electronic pianos. This work provides a new strategy for electret nanogenerators for self-powered sensor networks and portable electronics.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing
    Yao, Guo
    Xu, Liang
    Cheng, Xiaowen
    Li, Yangyang
    Huang, Xin
    Guo, Wei
    Liu, Shaoyu
    Wang, Zhong Lin
    Wu, Hao
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (06)
  • [22] Nanogenerators-Based Self-Powered Sensors
    Mondal, Rajib
    Hasan, Md Al Mahadi
    Zhang, Renyun
    Olin, Hakan
    Yang, Ya
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (12):
  • [23] Advances in Triboelectric Nanogenerators for Self-powered Neuromodulation
    Elsanadidy, Esraa
    Mosa, Islam M.
    Luo, Dan
    Xiao, Xiao
    Chen, Jun
    Wang, Zhong Lin
    Rusling, James F.
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (08)
  • [24] Application of nanogenerators in self-powered microfluidic systems
    Zhao, Luming
    Zhang, Hangyu
    Liu, Dong
    Zou, Yang
    Li, Zhou
    Liu, Bo
    NANO ENERGY, 2024, 123
  • [25] Triboelectric Nanogenerators for Self-Powered Wound Healing
    Xiao, Xiao
    Nashalian, Ardo
    Libanori, Alberto
    Fang, Yunsheng
    Li, Xiyao
    Chen, Jun
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (20)
  • [26] Textile triboelectric nanogenerators for self-powered biomonitoring
    Lama, John
    Yau, Andy
    Chen, Guorui
    Sivakumar, Aditya
    Zhao, Xun
    Chen, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19149 - 19178
  • [27] Triboelectric Nanogenerators for Self-Powered Breath Monitoring
    Shen, Sophia
    Xiao, Xiao
    Xiao, Xiao
    Chen, Jun
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 3952 - 3965
  • [28] Triboelectric nanogenerators as self-powered active sensors
    Wang, Sihong
    Lin, Long
    Wang, Zhong Lin
    NANO ENERGY, 2015, 11 : 436 - 462
  • [29] Triboelectric nanogenerators for self-powered drug delivery
    Li, Xiyao
    Tat, Trinny
    Chen, Jun
    TRENDS IN CHEMISTRY, 2021, 3 (09): : 765 - 778
  • [30] Self-Powered Sensors and Systems Based on Nanogenerators
    Wu, Zhiyi
    Cheng, Tinghai
    Wang, Zhong Lin
    SENSORS, 2020, 20 (10)