YANG-MILLS THEORY;
NONCOMMUTATIVE GEOMETRY;
GAUGE-THEORIES;
STANDARD MODEL;
FIELD THEORY;
HIGGS;
GRAVITY;
ALGEBRA;
D O I:
10.1063/1.532137
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We construct the BRST operator of quantum symmetries and show that the nilpotency of this operator can either be derived from the Hopf axiom structure of the quantum group symmetries or from the Jacobi identity of their quantum Lie algebra. We extend this BRST operator to the topological transformations and we investigate the propel-ties of invariant polynomials of curvatures from which we derive the descent equations for Donaldson invariants. (C) 1997 American Institute of Physics.
机构:
MIT, Ctr Theoret Phys, Cambridge, MA 02139 USAMIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Harlow, Daniel
Ooguri, Hirosi
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, JapanMIT, Ctr Theoret Phys, Cambridge, MA 02139 USA