The BRST operator of quantum symmetries: The quantum analogs of Donaldson invariants

被引:2
|
作者
Hammou, AB [1 ]
Lagraa, M [1 ]
机构
[1] INT CTR THEORET PHYS,TRIESTE,ITALY
关键词
YANG-MILLS THEORY; NONCOMMUTATIVE GEOMETRY; GAUGE-THEORIES; STANDARD MODEL; FIELD THEORY; HIGGS; GRAVITY; ALGEBRA;
D O I
10.1063/1.532137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the BRST operator of quantum symmetries and show that the nilpotency of this operator can either be derived from the Hopf axiom structure of the quantum group symmetries or from the Jacobi identity of their quantum Lie algebra. We extend this BRST operator to the topological transformations and we investigate the propel-ties of invariant polynomials of curvatures from which we derive the descent equations for Donaldson invariants. (C) 1997 American Institute of Physics.
引用
收藏
页码:4462 / 4473
页数:12
相关论文
共 50 条
  • [41] UNIVERSAL L OPERATOR AND INVARIANTS OF THE QUANTUM SUPERGROUP UQ(GL(M/N))
    ZHANG, RB
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (06) : 1970 - 1979
  • [42] Quantum mechanics and symmetries
    Wess, J.
    2000, (09): : 11 - 12
  • [43] Quantum invariants of templates
    Kauffman, LH
    Saito, M
    Sullivan, MC
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2003, 12 (05) : 653 - 681
  • [44] Symmetries in Quantum Field Theory and Quantum Gravity
    Harlow, Daniel
    Ooguri, Hirosi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (03) : 1669 - 1804
  • [45] Quantum Invariants of Knotoids
    Neslihan Gügümcü
    Louis H. Kauffman
    Communications in Mathematical Physics, 2021, 387 : 1681 - 1728
  • [46] Quantum fields, nonlocality and quantum group symmetries
    Arzano, Michele
    PHYSICAL REVIEW D, 2008, 77 (02):
  • [47] Quantum rotors and their symmetries
    Dudek, J
    Gózdz, A
    Rosly, D
    ACTA PHYSICA POLONICA B, 2001, 32 (09): : 2625 - 2638
  • [48] Quantum Spectral Symmetries
    Hamhalter, Jan
    Turilova, Ekaterina
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (12) : 3807 - 3818
  • [49] Symmetries in Quantum Field Theory and Quantum Gravity
    Daniel Harlow
    Hirosi Ooguri
    Communications in Mathematical Physics, 2021, 383 : 1669 - 1804
  • [50] Symmetries of quantum gravity
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2019, 62 (08) : 843 - 843