The BRST operator of quantum symmetries: The quantum analogs of Donaldson invariants

被引:2
|
作者
Hammou, AB [1 ]
Lagraa, M [1 ]
机构
[1] INT CTR THEORET PHYS,TRIESTE,ITALY
关键词
YANG-MILLS THEORY; NONCOMMUTATIVE GEOMETRY; GAUGE-THEORIES; STANDARD MODEL; FIELD THEORY; HIGGS; GRAVITY; ALGEBRA;
D O I
10.1063/1.532137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the BRST operator of quantum symmetries and show that the nilpotency of this operator can either be derived from the Hopf axiom structure of the quantum group symmetries or from the Jacobi identity of their quantum Lie algebra. We extend this BRST operator to the topological transformations and we investigate the propel-ties of invariant polynomials of curvatures from which we derive the descent equations for Donaldson invariants. (C) 1997 American Institute of Physics.
引用
收藏
页码:4462 / 4473
页数:12
相关论文
共 50 条
  • [31] On the quantum BRST structure of classical mechanics
    Marnelius, R
    MODERN PHYSICS LETTERS A, 2000, 15 (27) : 1665 - 1677
  • [32] INVARIANTS IN QUANTUM GEOMETRY
    Lim, Adrian P. C.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 87 (01) : 87 - 105
  • [33] Quantum knot invariants
    Stavros Garoufalidis
    Research in the Mathematical Sciences, 2018, 5
  • [34] Invariants of the quantum torus
    Baudry, Julie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (05): : 531 - 547
  • [35] Quantum knot invariants
    Garoufalidis, Stavros
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2018, 5
  • [36] Quantum Invariants of Knotoids
    Gueguemcue, Neslihan
    Kauffman, Louis H.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 387 (03) : 1681 - 1728
  • [37] The role of quantum symmetries
    Andrea Fratalocchi
    Nature Photonics, 2013, 7 : 271 - 273
  • [38] SYMMETRIES IN QUANTUM LOGICS
    PULMANNOVA, S
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1977, 16 (09) : 681 - 688
  • [39] Particles and quantum symmetries
    Marcinek, W
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 43 (1-2) : 239 - 245
  • [40] Symmetries of quantum evolutions
    Chiribella, Giulio
    Aurell, Erik
    Zyczkowski, Karol
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):