Lateral overdetermination of the FitzHugh-Nagumo system

被引:8
|
作者
Cox, S [1 ]
Wagner, A
机构
[1] Rice Univ, Houston, TX 77005 USA
[2] Rhein Westfal TH Aachen, Inst Math, Aachen, Germany
关键词
FitzHugh -Nagumo systems - Heat equations - Membrane conductance - Nonlinear conductance;
D O I
10.1088/0266-5611/20/5/019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The FitzHugh-Nagumo system, composed of a semilinear parabolic equation coupled to a linear ordinary equation, captures the qualitative dynamics of an excitable fibre. The semilinear term encodes the fibre's nonlinear membrane conductance that underlies its excitability. We here establish conditions under which a semilinear term exists that corresponds to specified Neumann data at each end and Dirichlet data at one end.
引用
收藏
页码:1639 / 1647
页数:9
相关论文
共 50 条
  • [41] A NUMERICAL VERIFICATION METHOD FOR A SYSTEM OF FITZHUGH-NAGUMO TYPE
    Cai, Shuting
    Nagatou, Kaori
    Watanabe, Yoshitaka
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (10) : 1195 - 1220
  • [42] Traveling Pulse Solutions for the Discrete FitzHugh-Nagumo System
    Hupkes, Hermen Jan
    Sandstede, Bjoern
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03): : 827 - 882
  • [43] Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise
    D. Valenti
    G. Augello
    B. Spagnolo
    The European Physical Journal B, 2008, 65 : 443 - 451
  • [44] Zero-Hopf bifurcation in the FitzHugh-Nagumo system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    Vidal, Claudio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4289 - 4299
  • [45] Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise
    Valenti, D.
    Augello, G.
    Spagnolo, B.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 65 (03): : 443 - 451
  • [46] Types of bifurcations of FitzHugh-Nagumo maps
    Duarte, J
    Silva, L
    Ramos, JS
    NONLINEAR DYNAMICS, 2006, 44 (1-4) : 231 - 242
  • [47] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [48] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [49] QUALITATIVE THEORY OF FITZHUGH-NAGUMO EQUATIONS
    RAUCH, J
    SMOLLER, J
    ADVANCES IN MATHEMATICS, 1978, 27 (01) : 12 - 44
  • [50] STOCHASTIC FITZHUGH-NAGUMO SYSTEMS WITH DELAY
    Xu, Lu
    Yan, Weiping
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03): : 1079 - 1103