Lithium-Ion Battery Remaining Useful Life Prediction With Box-Cox Transformation and Monte Carlo Simulation

被引:176
|
作者
Zhang, Yongzhi [1 ,2 ]
Xiong, Rui [1 ]
He, Hongwen [1 ]
Pecht, Michael G. [2 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Dept Vehicle Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[2] Univ Maryland, Ctr Adv Life Cycle Engn, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
Acceleration aging test; Box-Cox transformation (BCT); electric vehicles (EVs); lithium-ion battery; Monte Carlo (MC) simulation; remaining useful life (RUL); UNSCENTED KALMAN FILTER; CHARGE ESTIMATION; PARTICLE FILTER; PROGNOSTICS; STATE; OPTIMIZATION; FRAMEWORK; SYSTEMS; CELLS;
D O I
10.1109/TIE.2018.2808918
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The current lithium-ion battery remaining useful life (RUL) prediction techniques are mainly developed dependent on offline training data. The loaded current, temperature, and state of charge of lithium-ion batteries used for electric vehicles (EVs) change dramatically under the working conditions. Therefore, it is difficult to design acceleration aging tests of lithium-ion batteries under similar working conditions as those for EVs and to collect effective offline training data. To address this problem, this paper developed an RUL prediction method based on the Box-Cox transformation (BCT) and Monte Carlo (MC) simulation. This method can be implemented independent of offline training data. In the method, the BCT was used to transform the available capacity data and to construct a linear model between the transformed capacities and cycles. The constructed linear model using the BCT was extrapolated to predict the battery RUL, and the RUL prediction uncertainties were generated using the MC simulation. Experimental results showed that accurate and precise RULs were predicted with errors and standard deviations within, respectively, [-20, 10] cycles and [1.8, 7] cycles. If some offline training data are available, the method can reduce the required online training data and, thus, the acceleration aging test time of lithium-ion batteries. Experimental results showed that the acceleration time of the tested cells can be reduced by 70%-85% based on the developed method, which saved one to three months' acceleration test time compared to the particle filter method.
引用
收藏
页码:1585 / 1597
页数:13
相关论文
共 50 条
  • [21] Lithium-ion battery remaining useful life prediction based on GRU-RNN
    Song, Yuchen
    Li, Lyu
    Peng, Yu
    Liu, Datong
    12TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY, AND SAFETY (ICRMS 2018), 2018, : 317 - 322
  • [22] Remaining Useful Life Prediction of Lithium-ion Battery Based on Discrete Wavelet Transform
    Wang, Yujie
    Pan, Rui
    Yang, Duo
    Tang, Xiaopeng
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2053 - 2058
  • [23] A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
    Ng, Selina S. Y.
    Xing, Yinjiao
    Tsui, Kwok L.
    APPLIED ENERGY, 2014, 118 : 114 - 123
  • [24] Probabilistic Prediction of Remaining Useful Life of Lithium-ion Batteries
    Zhang, Renjie
    Li, Jialin
    Chen, Yifei
    Tan, Shiyi
    Jiang, Jiaxu
    Yuan, Xinmei
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1820 - 1824
  • [25] A review on prognostics approaches for remaining useful life of lithium-ion battery
    Su, C.
    Chen, H. J.
    2017 INTERNATIONAL CONFERENCE ON NEW ENERGY AND FUTURE ENERGY SYSTEM (NEFES 2017), 2017, 93
  • [27] Lithium-ion battery remaining useful life prediction based on grey support vector machines
    Li, Xiaogang
    Miao, Jieqiong
    Ye, Jianhua
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (12)
  • [28] Remaining useful life prediction for lithium-ion battery using a data-driven method
    Jin Z.
    Fang C.
    Wu J.
    Li J.
    Zeng W.
    Zhao X.
    International Journal of Wireless and Mobile Computing, 2022, 23 (3-4) : 239 - 249
  • [29] Remaining useful life prediction of lithium-ion battery with nonparametric degradation modeling and incomplete data
    Li, Naipeng
    Wang, Mingyang
    Lei, Yaguo
    Yang, Bin
    Li, Xiang
    Si, Xiaosheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 256
  • [30] An interpretable remaining useful life prediction scheme of lithium-ion battery considering capacity regeneration
    Lyu, Guangzheng
    Zhang, Heng
    Zhang, YuJie
    Miao, Qiang
    MICROELECTRONICS RELIABILITY, 2022, 138