Remaining useful life prediction for lithium-ion battery using a data-driven method

被引:0
|
作者
Jin Z. [1 ]
Fang C. [1 ]
Wu J. [1 ]
Li J. [1 ]
Zeng W. [2 ]
Zhao X. [3 ]
机构
[1] Department of Electrical Engineering, University of Hainan, Hainan, Haikou
[2] Hainan Association for Artificial Intelligence, Hainan, Haikou
[3] Hainan Curium Technology Co., Ltd., Hainan, Haikou
关键词
CEEMDAN; complete ensemble empirical mode decomposition with adaptive noise; Li-ion battery; remaining useful life long and short-term memory;
D O I
10.1504/ijwmc.2022.127586
中图分类号
学科分类号
摘要
Accurate prediction of the remaining useful life (RUL) of Li-ion batteries is one of the key technologies in the Battery Management System (BMS). To boost the prediction accuracy of Li-ion battery RUL, a data-driven approach is developed, through the combination of Long and Short-Term Memory (LSTM) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). First and foremost, the battery capacity extracted from the National Aeronautics and Space Administration (NASA) battery data set is used as original data and the CEEMDAN is utilised to deal with original data into components of dissimilar frequencies. Then, the LSTM model is used to predict components of different frequencies. Finally, the CEEMDAN-LSTM prediction result is efficaciously integrated to acquire the final prediction of the Li-ion battery RUL. The results show that the proposed method is superior for Li-ion battery RUL prediction. Copyright © 2022 Inderscience Enterprises Ltd.
引用
收藏
页码:239 / 249
页数:10
相关论文
共 50 条
  • [1] A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction
    Peng, Jun
    Zheng, Zhiyong
    Zhang, Xiaoyong
    Deng, Kunyuan
    Gao, Kai
    Li, Heng
    Chen, Bin
    Yang, Yingze
    Huang, Zhiwu
    ENERGIES, 2020, 13 (03)
  • [2] Prediction of Lithium-ion Battery Remaining Useful Life Based on Hybrid Data-Driven Method with Optimized Parameter
    Cai, Yishan
    Yang, Lin
    Deng, Zhongwei
    Zhao, Xiaowei
    Deng, Hao
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 1 - 6
  • [3] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615
  • [4] Data-driven Prognostics and Remaining Useful Life Estimation for Lithium-ion Battery: A Review
    LIU Datong
    ZHOU Jianbao
    PENG Yu
    Instrumentation, 2014, 01 (01) : 59 - 70
  • [5] State-of-Health Estimation and Remaining-Useful-Life Prediction for Lithium-Ion Battery Using a Hybrid Data-Driven Method
    Gou, Bin
    Xu, Yan
    Feng, Xue
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 10854 - 10867
  • [6] Lithium-Ion Battery Remaining Useful Life Prognostics Using Data-Driven Deep Learning Algorithm
    Li, Lyu
    Song, Yuchen
    Peng, Yu
    Liu, Datong
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 1094 - 1100
  • [7] A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life
    Ren, Lei
    Dong, Jiabao
    Wang, Xiaokang
    Meng, Zihao
    Zhao, Li
    Deen, M. Jamal
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) : 3478 - 3487
  • [8] A data-driven approach with error compensation and uncertainty quantification for remaining useful life prediction of lithium-ion battery
    Wei, Meng
    Ye, Min
    Wang, Qiao
    Lian, Gaoqi
    Xu, Xinxin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (14) : 20121 - 20135
  • [9] A Data-Driven Method With Mode Decomposition Mechanism for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Wang, Jianguo
    Zhang, Shude
    Li, Chenyu
    Wu, Lifeng
    Wang, Yingzhou
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (11) : 13684 - 13695
  • [10] A Data-Driven Method for Lithium-Ion Batteries Remaining Useful Life Prediction Based on Optimal Hyperparameters
    Zhu, Yuhao
    Shang, Yunlong
    Duan, Bin
    Gu, Xin
    Li, Shipeng
    Chen, Guicheng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7388 - 7392