Identification of candidate material systems for quantum dot solar cells including the effect of strain

被引:18
|
作者
Dahal, Som N. [1 ]
Bremner, Stephen P. [2 ]
Honsberg, Christiana B. [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
来源
PROGRESS IN PHOTOVOLTAICS | 2010年 / 18卷 / 04期
基金
美国国家科学基金会;
关键词
band edge alignment; intermediate band solar cells; lattice mismatch; quantum dots; strain; INTERMEDIATE-BAND; DEFORMATION; EFFICIENCY; INP;
D O I
10.1002/pip.937
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Heterostructures that include self-assembled quantum dots (SAQDs) have been suggested as model systems for the realization of novel high efficiency solar cells such as those based on intermediate bands (IBs). The lattice mismatch in the epitaxial growth of these structures, necessary for the formation of SAQDs, introduces strain throughout the structure, making the selection of materials systems with appropriate physical parameters problematic. The model solid theory is used to calculate the energy band edge alignment at Gamma point of such quantum dot (QD) heterostructures including the effects of strain. With the modified band gaps due to strain, a materials search was performed for high efficiency QD solar cells among III-V binaries and ternaries with negligible valence band offsets. This requirement of the valence band offset along with the limited band gap ranges for optimum efficiency results in only a few feasible materials systems being identified. The optimum barrier/dot material system found was Al0.57In0.43As/InP0.87Sb0.13 grown on lattice matched metamorphic buffer layer, but due to miscibility gap concerns it is suggested that the Al0.50In0.50As/InAs0.41P0.59 fully strained system may be preferred. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 50 条
  • [1] Effect of strain compensation on quantum dot enhanced GaAs solar cells
    Hubbard, S. M.
    Cress, C. D.
    Bailey, C. G.
    Raffaelle, R. P.
    Bailey, S. G.
    Wilt, D. M.
    APPLIED PHYSICS LETTERS, 2008, 92 (12)
  • [2] Strain Effects on Radiation Tolerance of Quantum Dot Solar Cells
    Kerestes, Christopher
    Forbes, David V.
    Bittner, Zac
    Polly, Stephen
    Lin, Yong
    Richards, Benjamin
    Sharps, Paul
    Hubbard, Seth
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 2792 - 2796
  • [3] RADIATION EFFECTS ON STRAIN COMPENSATED QUANTUM DOT SOLAR CELLS
    Cress, Cory D.
    Bailey, Christopher G.
    Hubbard, Seth M.
    Wilt, David M.
    Bailey, Sheila G.
    Raffaelle, Ryne P.
    PVSC: 2008 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-4, 2008, : 1390 - +
  • [4] The effect of water on colloidal quantum dot solar cells
    Guozheng Shi
    Haibin Wang
    Yaohong Zhang
    Chen Cheng
    Tianshu Zhai
    Botong Chen
    Xinyi Liu
    Ryota Jono
    Xinnan Mao
    Yang Liu
    Xuliang Zhang
    Xufeng Ling
    Yannan Zhang
    Xing Meng
    Yifan Chen
    Steffen Duhm
    Liang Zhang
    Tao Li
    Lu Wang
    Shiyun Xiong
    Takashi Sagawa
    Takaya Kubo
    Hiroshi Segawa
    Qing Shen
    Zeke Liu
    Wanli Ma
    Nature Communications, 12
  • [5] The effect of water on colloidal quantum dot solar cells
    Shi, Guozheng
    Wang, Haibin
    Zhang, Yaohong
    Cheng, Chen
    Zhai, Tianshu
    Chen, Botong
    Liu, Xinyi
    Jono, Ryota
    Mao, Xinnan
    Liu, Yang
    Zhang, Xuliang
    Ling, Xufeng
    Zhang, Yannan
    Meng, Xing
    Chen, Yifan
    Duhm, Steffen
    Zhang, Liang
    Li, Tao
    Wang, Lu
    Xiong, Shiyun
    Sagawa, Takashi
    Kubo, Takaya
    Segawa, Hiroshi
    Shen, Qing
    Liu, Zeke
    Ma, Wanli
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] Simulation of Quantum Dot Solar Cells Including Carrier Intersubband Dynamics and Transport
    Gioannini, Mariangela
    Cedola, Ariel P.
    Di Santo, Natale
    Bertazzi, Francesco
    Cappelluti, Federica
    IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (04): : 1271 - 1278
  • [7] Quantum dot solar cells
    Nozik, AJ
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2): : 115 - 120
  • [8] Quantum dot solar cells
    Aroutiounian, V
    Petrosyan, S
    Khachatryan, A
    Touryan, K
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) : 2268 - 2271
  • [9] Quantum dot solar cells
    Aroutiounian, VM
    Petrosyan, S
    Khachatryan, A
    Touryan, KJ
    SOLAR AND SWITCHING MATERIALS, 2001, 4458 : 38 - 45
  • [10] Quantum Dot Solar Cells
    Bedi, Guneet
    Singh, Rajendra
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2017, : 225 - 229