Identification of candidate material systems for quantum dot solar cells including the effect of strain

被引:18
|
作者
Dahal, Som N. [1 ]
Bremner, Stephen P. [2 ]
Honsberg, Christiana B. [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
来源
PROGRESS IN PHOTOVOLTAICS | 2010年 / 18卷 / 04期
基金
美国国家科学基金会;
关键词
band edge alignment; intermediate band solar cells; lattice mismatch; quantum dots; strain; INTERMEDIATE-BAND; DEFORMATION; EFFICIENCY; INP;
D O I
10.1002/pip.937
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Heterostructures that include self-assembled quantum dots (SAQDs) have been suggested as model systems for the realization of novel high efficiency solar cells such as those based on intermediate bands (IBs). The lattice mismatch in the epitaxial growth of these structures, necessary for the formation of SAQDs, introduces strain throughout the structure, making the selection of materials systems with appropriate physical parameters problematic. The model solid theory is used to calculate the energy band edge alignment at Gamma point of such quantum dot (QD) heterostructures including the effects of strain. With the modified band gaps due to strain, a materials search was performed for high efficiency QD solar cells among III-V binaries and ternaries with negligible valence band offsets. This requirement of the valence band offset along with the limited band gap ranges for optimum efficiency results in only a few feasible materials systems being identified. The optimum barrier/dot material system found was Al0.57In0.43As/InP0.87Sb0.13 grown on lattice matched metamorphic buffer layer, but due to miscibility gap concerns it is suggested that the Al0.50In0.50As/InAs0.41P0.59 fully strained system may be preferred. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 50 条
  • [21] Improved quantum dot stacking for intermediate band solar cells using strain compensation
    Simmonds, Paul J.
    Sun, Meng
    Laghumavarapu, Ramesh Babu
    Liang, Baolai
    Norman, Andrew G.
    Luo, Jun-Wei
    Huffaker, Diana L.
    NANOTECHNOLOGY, 2014, 25 (44)
  • [22] A theoretical approach on the strain-induced dislocation effects in the quantum dot solar cells
    Gorji, Nima Eshaghi
    SOLAR ENERGY, 2012, 86 (03) : 935 - 940
  • [23] Carrier recombination effects in strain compensated quantum dot stacks embedded in solar cells
    Alonso-Alvarez, D.
    Taboada, A. G.
    Ripalda, J. M.
    Alen, B.
    Gonzalez, Y.
    Gonzalez, L.
    Garcia, J. M.
    Briones, F.
    Marti, A.
    Luque, A.
    Sanchez, A. M.
    Molina, S. I.
    APPLIED PHYSICS LETTERS, 2008, 93 (12)
  • [24] Performance Comparison for Different Material Quantum Dot Single Intermediate Band Solar Cells
    Wei, Wensheng
    Shan, Feng
    Zhao, Shaoyun
    Zhang, Qiubo
    APPLIED MECHANICS AND MATERIALS II, PTS 1 AND 2, 2014, 477-478 : 404 - 411
  • [25] QUANTUM DOT-SENSITIZED SOLAR CELLS
    Ferreira Vitoreti, Ana Beatriz
    Correa, Letcia Bernardes
    Raphael, Ellen
    Patrocinio, Antonio Otavio T.
    Nogueira, Ana Flavia
    Schiavon, Marco Antonio
    QUIMICA NOVA, 2017, 40 (04): : 436 - 446
  • [26] Quantum-Dot-Sensitized Solar Cells
    Ruhle, Sven
    Shalom, Menny
    Zaban, Arie
    CHEMPHYSCHEM, 2010, 11 (11) : 2290 - 2304
  • [27] Quantum Dot Antennas for Photoelectrochemical Solar Cells
    Buhbut, Sophia
    Itzhakov, Stella
    Oron, Dan
    Zaban, Arie
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15): : 1917 - 1924
  • [28] Monolithic quantum dot sensitized solar cells
    Samadpour, M.
    Ghane, Z.
    Ghazyani, N.
    Tajabadi, F.
    Taghavinia, N.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (48)
  • [29] Analysis of MultiLayer Quantum Dot for Solar Cells
    Kumar, Prateek
    Anurag
    Singh, Balwinder
    2016 8TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2016, : 553 - 556
  • [30] Quantum Dot-Sensitized Solar Cells
    Liu Feng
    Zhu Jun
    Wei Junfeng
    Li Yi
    Hu Linhua
    Dai Songyuan
    PROGRESS IN CHEMISTRY, 2013, 25 (2-3) : 409 - 418