Effect of strain compensation on quantum dot enhanced GaAs solar cells

被引:346
|
作者
Hubbard, S. M. [1 ]
Cress, C. D. [1 ]
Bailey, C. G. [1 ]
Raffaelle, R. P. [1 ]
Bailey, S. G. [2 ]
Wilt, D. M. [2 ]
机构
[1] Rochester Inst Technol, Nanopower Res Lab, Dept Phys, Rochester, NY 14623 USA
[2] NASA, Glenn Res Ctr, Photovolta & Power Technol Branch, Cleveland, OH 44135 USA
基金
美国国家航空航天局;
关键词
D O I
10.1063/1.2903699
中图分类号
O59 [应用物理学];
学科分类号
摘要
GaP tensile strain compensation ( SC ) layers were introduced into GaAs solar cells enhanced with a five layer stack of InAs quantum dots (QDs ). One sun air mass zero illuminated current- voltage curves show that SC results in improved conversion efficiency and reduced dark current. The strain compensated QD solar cell shows a slight increase in short circuit current compared to a baseline GaAs cell due to sub- GaAs bandgap absorption by the InAs QD. Quantum efficiency and electroluminescence were also measured and provide further insight to the improvements due to SC. (C) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Effect of quantum dot position and background doping on the performance of quantum dot enhanced GaAs solar cells
    Driscoll, Kristina
    Bennett, Mitchell F.
    Polly, Stephen J.
    Forbes, David V.
    Hubbard, Seth M.
    APPLIED PHYSICS LETTERS, 2014, 104 (02)
  • [2] Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers
    Laghumavarapu, R. B.
    El-Emawy, M.
    Nuntawong, N.
    Moscho, A.
    Lester, L. F.
    Huffaker, D. L.
    APPLIED PHYSICS LETTERS, 2007, 91 (24)
  • [3] SUBSTRATE ORIENTATION EFFECTS ON QUANTUM DOT ENHANCED GAAS SOLAR CELLS
    Forbes, David V.
    Bailey, Chris G.
    Polly, Stephen
    Plourde, Chelsea
    Okvath, Joanne
    Hubbard, Seth M.
    Raffaelle, Ryne P.
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [4] Improved quantum dot stacking for intermediate band solar cells using strain compensation
    Simmonds, Paul J.
    Sun, Meng
    Laghumavarapu, Ramesh Babu
    Liang, Baolai
    Norman, Andrew G.
    Luo, Jun-Wei
    Huffaker, Diana L.
    NANOTECHNOLOGY, 2014, 25 (44)
  • [5] Submonolayer InGaAs/GaAs quantum dot solar cells
    Lam, Phu
    Wu, Jiang
    Tang, Mingchu
    Jiang, Qi
    Hatch, Sabina
    Beanland, Richard
    Wilson, James
    Allison, Rebecca
    Liu, Huiyun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 126 : 83 - 87
  • [6] INAS QUANTUM DOT ENHANCEMENT OF GAAS SOLAR CELLS
    Hubbard, Seth M.
    Plourde, Chelsea
    Bittner, Zac
    Bailey, Christopher G.
    Harris, Mike
    Bald, Tim
    Bennett, Mitch
    Forbes, David V.
    Raffaelle, Ryne
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [7] A comparison of bulk and quantum dot GaAs solar cells
    Li, Tian
    Amirloo, J.
    Murray, J.
    Sablon, K. A.
    Little, J.
    Uppal, P.
    Munday, J.
    Dagenais, Mario
    2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 194 - +
  • [8] Modeling of InAs/GaAs Quantum Dot Solar Cells
    Rizk, Ayman
    Islam, Kazi
    Nayfeh, Ammar
    UKSIM-AMSS SEVENTH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS 2013), 2013, : 677 - 680
  • [9] Effect of internal electric field on InAs/GaAs quantum dot solar cells
    Kasamatsu, Naofumi
    Kada, Tomoyuki
    Hasegawa, Aiko
    Harada, Yukihiro
    Kita, Takashi
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (08)
  • [10] Effect of rapid thermal annealing on InAs/GaAs quantum dot solar cells
    Phu Minh Lam
    Wu, Jiang
    Hatch, Sabina
    Kim, Dongyoung
    Tang, Mingchu
    Liu, Huiyun
    Wilson, James
    Allison, Rebecca
    IET OPTOELECTRONICS, 2015, 9 (02) : 65 - 68