Properties of Boroczky things in high-dimensional hyperbolic spaces

被引:3
|
作者
Dolbilin, Nikolai [1 ]
Frettloeh, Dirk [2 ]
机构
[1] VA Steklov Math Inst, Moscow 119991, Russia
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/j.ejc.2009.11.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider families of Boroczky tilings in hyperbolic space in an arbitrary dimension, study some basic properties and classify all possible symmetries. In particular, it is shown that these Wings are non-crystallographic, and that there are uncountably many filings with a fixed prototile. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1181 / 1195
页数:15
相关论文
共 50 条
  • [21] Pattern selection in high-dimensional parameter spaces
    Viehoever, Georg
    Ward, Brian
    Stock, Hans-Juergen
    OPTICAL MICROLITHOGRAPHY XXV, PTS 1AND 2, 2012, 8326
  • [22] Differential evolution in high-dimensional search spaces
    Olorunda, Olusegun
    Engelbrecht, Andries P.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 1934 - 1941
  • [23] Optimal outlier removal in high-dimensional spaces
    Dunagan, J
    Vempala, S
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 68 (02) : 335 - 373
  • [24] Mining Projected Clusters in High-Dimensional Spaces
    Bouguessa, Mohamed
    Wang, Shengrui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (04) : 507 - 522
  • [25] Constructive Kissing Numbers in High-Dimensional Spaces
    Lanju Xu
    Journal of Systems Science and Complexity, 2007, 20 : 30 - 40
  • [26] High-dimensional distributed semantic spaces for utterances
    Karlgren, Jussi
    Kanerva, Pentti
    NATURAL LANGUAGE ENGINEERING, 2019, 25 (04) : 503 - 518
  • [27] Constructive kissing numbers in high-dimensional spaces
    Xu, Lanju
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2007, 20 (01) : 30 - 40
  • [28] Structure and visualization of high-dimensional conductance spaces
    Taylor, Adam L.
    Hickey, Timothy J.
    Prinz, Astrid A.
    Marder, Eve
    JOURNAL OF NEUROPHYSIOLOGY, 2006, 96 (02) : 891 - 905
  • [29] ASPECTS OF HIGH-DIMENSIONAL THEORIES IN EMBEDDING SPACES
    MAIA, MD
    MECKLENBURG, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (10) : 3047 - 3050
  • [30] Adaptive Indexing in High-Dimensional Metric Spaces
    Lampropoulos, Konstantinos
    Zardbani, Fatemeh
    Mamoulis, Nikos
    Karras, Panagiotis
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (10): : 2525 - 2537