Pattern selection in high-dimensional parameter spaces

被引:8
|
作者
Viehoever, Georg [1 ]
Ward, Brian [2 ]
Stock, Hans-Juergen [1 ]
机构
[1] Synopsys GmbH, Karl Hammerschmidt Str 34, D-85609 Aschheim Dornach, Germany
[2] Synopsys, Austin, TX 78745 USA
来源
关键词
Pattern Selection; OPC; model calibration; image parameter space; test pattern coverage;
D O I
10.1117/12.916352
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Pattern selection for OPC model calibration is frequently done by image parameter space (IPS) coverage methods. There ensure that the images of the chosen test patterns cover important regions of an n-dimensional parameter space spawned by image parameters, such as minimum and maximum intensity I-min, I-max, curvature, slope and image density. But such a small number of parameteres is often insufficient for finding ensures coverage of a high dimensional parameter space with a high number of parameters, even permitting the use of all pixels of the aerial images (n >> 1000) as parameters.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A study on tuning parameter selection for the high-dimensional lasso
    Homrighausen, Darren
    McDonald, Daniel J.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (15) : 2865 - 2892
  • [2] A Survey of Tuning Parameter Selection for High-Dimensional Regression
    Wu, Yunan
    Wang, Lan
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 7, 2020, 2020, 7 : 209 - 226
  • [3] Efficient characterization of high-dimensional parameter spaces for systems biology
    Zamora-Sillero, Elias
    Hafner, Marc
    Ibig, Ariane
    Stelling, Joerg
    Wagner, Andreas
    [J]. BMC SYSTEMS BIOLOGY, 2011, 5
  • [4] High-Dimensional Real Parameter Clonal Selection Memory Algorithm
    Song, Dan
    Fan, Xiaoping
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 42 - 46
  • [5] Stability of feature selection algorithms: a study on high-dimensional spaces
    Kalousis, Alexandros
    Prados, Julien
    Hilario, Melanie
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 12 (01) : 95 - 116
  • [6] SUBMODULAR FEATURE SELECTION FOR HIGH-DIMENSIONAL ACOUSTIC SCORE SPACES
    Liu, Yuzong
    Wei, Kai
    Kirchhoff, Katrin
    Song, Yisong
    Bilmes, Jeff
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 7184 - 7188
  • [7] Stability of feature selection algorithms: a study on high-dimensional spaces
    Alexandros Kalousis
    Julien Prados
    Melanie Hilario
    [J]. Knowledge and Information Systems, 2007, 12 : 95 - 116
  • [8] Visualization and efficient generation of constrained high-dimensional theoretical parameter spaces
    Jason Baretz
    Nicholas Carrara
    Jacob Hollingsworth
    Daniel Whiteson
    [J]. Journal of High Energy Physics, 2023
  • [9] Visualization and efficient generation of constrained high-dimensional theoretical parameter spaces
    Baretz, Jason
    Carrara, Nicholas
    Hollingsworth, Jacob
    Whiteson, Daniel
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [10] The mathematics of high-dimensional spaces
    Rogers, D
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U524 - U524