The maximum number of edges in a graph with fixed edge-degree

被引:1
|
作者
Faudree, RJ
Sheehan, J
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Aberdeen, Dept Math Sci, Aberdeen AB9 2TY, Scotland
关键词
D O I
10.1016/S0012-365X(97)00078-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that n greater than or equal to 2t + 2 (t greater than or equal to 17). Let G be a graph with n vertices such that its complement is connected and, for all distinct non-adjacent vertices u and upsilon, there are at least t common neighbours. Then we prove that \E(G)\ greater than or equal to inverted right perpendicular(2t + 1)n - 2t(2) - 3)inverted left perpendicular /2 (n less than or equal to 3t - 1) and \E(G)\ greater than or equal to (t + 1)n - t(2) - t - 3 (n greater than or equal to 3t). Furthermore, the results are sharp.
引用
收藏
页码:81 / 101
页数:21
相关论文
共 50 条
  • [21] On the Maximum Number of Edges in Chordal Graphs of Bounded Degree and Matching Number
    Blair, Jean R. S.
    Heggernes, Pinar
    Lima, Paloma T.
    Lokshtanov, Daniel
    [J]. ALGORITHMICA, 2022, 84 (12) : 3587 - 3602
  • [22] The maximum number of Hamiltonian cycles in graphs with a fixed number of vertices and edges
    Teunter, RH
    van der Poort, ES
    [J]. OPERATIONS RESEARCH LETTERS, 2000, 26 (02) : 91 - 98
  • [23] The number of edges of the edge polytope of a finite simple graph
    Hibi, Takayuki
    Mori, Aki
    Ohsugi, Hidefumi
    Shikama, Akihiro
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2016, 10 (02) : 323 - 332
  • [24] THE RAMSEY NUMBER OF A GRAPH WITH BOUNDED MAXIMUM DEGREE
    CHVATAL, C
    RODL, V
    SZEMEREDI, E
    TROTTER, WT
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (03) : 239 - 243
  • [25] The maximum number of complete subgraphs in a graph with given maximum degree
    Cutler, Jonathan
    Radcliffe, A. J.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 104 : 60 - 71
  • [26] The forcing edge fixed steiner number of a graph
    Perumalsamy, M.
    Sudhahar, P. Arul Paul
    Vasanthi, R.
    John, J.
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2019, 22 (01): : 1 - 10
  • [27] THE NUMBER OF EDGES IN A MAXIMUM GRAPH WITH UNI-LENGTH CYCLES
    施永兵
    [J]. Science Bulletin, 1988, (21) : 1831 - 1832
  • [28] THE MAXIMUM NUMBER OF EDGES IN A MINIMAL GRAPH OF DIAMETER-2
    FUREDI, Z
    [J]. JOURNAL OF GRAPH THEORY, 1992, 16 (01) : 81 - 98
  • [29] THE NUMBER OF EDGES IN A MAXIMUM GRAPH WITH UNI-LENGTH CYCLES
    SHI, YB
    [J]. KEXUE TONGBAO, 1988, 33 (21): : 1831 - 1832
  • [30] Maximum number of edges in a critically k-connected graph
    Ando, K
    Egawa, Y
    [J]. DISCRETE MATHEMATICS, 2003, 260 (1-3) : 1 - 25