THE MAXIMUM NUMBER OF EDGES IN A MINIMAL GRAPH OF DIAMETER-2

被引:34
|
作者
FUREDI, Z
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
[2] UNIV MINNESOTA,INST MATH & APPLICAT,MINNEAPOLIS,MN 55455
关键词
D O I
10.1002/jgt.3190160110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G of diameter 2 is minimal if the deletion of any edge increases its diameter. Here the following conjecture of Murty and Simon is proved for n > n0. If G has n vertices then it has at most [n2/4] edges. The only extremum is the complete bipartite graph.
引用
收藏
页码:81 / 98
页数:18
相关论文
共 50 条