THE MAXIMUM NUMBER OF EDGES IN A MINIMAL GRAPH OF DIAMETER-2

被引:34
|
作者
FUREDI, Z
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
[2] UNIV MINNESOTA,INST MATH & APPLICAT,MINNEAPOLIS,MN 55455
关键词
D O I
10.1002/jgt.3190160110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G of diameter 2 is minimal if the deletion of any edge increases its diameter. Here the following conjecture of Murty and Simon is proved for n > n0. If G has n vertices then it has at most [n2/4] edges. The only extremum is the complete bipartite graph.
引用
收藏
页码:81 / 98
页数:18
相关论文
共 50 条
  • [31] Diameter-vital edges in a graph
    Walikar, H. B.
    Buckley, Fred
    Huilgol, Medha Itagi
    AEQUATIONES MATHEMATICAE, 2011, 82 (03) : 201 - 211
  • [32] Diameter-vital edges in a graph
    H. B. Walikar
    Fred Buckley
    Medha Itagi Huilgol
    Aequationes mathematicae, 2011, 82 : 201 - 211
  • [33] MAXIMUM NUMBER OF KJ-SUBGRAPHS IN A GRAPH WITH K-INDEPENDENT EDGES
    DOUGLAS, RJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) : 258 - 261
  • [34] Diameter-essential edges in a graph
    Walikar, HB
    Buckley, F
    Itagi, MK
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 211 - 225
  • [35] ON NUMBER OF DISJOINT EDGES IN A GRAPH
    WEINSTEIN, JM
    CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (01): : 106 - &
  • [37] FACES OF DIAMETER-2 ON THE HAMILTONIAN CYCLE POLYTOPE
    SIERKSMA, G
    TEUNTER, RH
    TIJSSEN, GA
    OPERATIONS RESEARCH LETTERS, 1995, 18 (02) : 59 - 64
  • [38] THE MAXIMUM NUMBER OF EDGES IN A {Kr+1, Mk+1}-FREE GRAPH
    Fu, Lingting
    Wang, Jian
    Yang, Weihua
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1617 - 1629
  • [39] The decay number and the maximum genus of diameter 2 graphs
    Fu, HL
    Tsai, MC
    Xuong, NH
    DISCRETE MATHEMATICS, 2001, 226 (1-3) : 191 - 197
  • [40] On the Number of Edges in a Minimum -Saturated Graph
    Zhang, Mingchao
    Luo, Song
    Shigeno, Maiko
    GRAPHS AND COMBINATORICS, 2015, 31 (04) : 1085 - 1106