Maximum disjoint bases and constant-weight codes

被引:3
|
作者
Tonchev, VD [1 ]
机构
[1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
affine geometry; constant-weight code; Steiner system;
D O I
10.1109/18.651061
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The following lower bound for binary constant weight codes are derived by an explicit construction: A(17, 4, 5) greater than or equal to 441. The construction exploits maximal sets of bases in the four-dimensional binary vector space pairwise intersecting in at most two vectors.
引用
收藏
页码:333 / 334
页数:2
相关论文
共 50 条
  • [41] A family of diameter perfect constant-weight codes from Steiner systems
    Shi, Minjia
    Xia, Yuhong
    Krotov, Denis S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 200
  • [42] Constructions of Optimal and Near-Optimal Multiply Constant-Weight Codes
    Chee, Yeow Meng
    Kiah, Han Mao
    Zhang, Hui
    Zhang, Xiande
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (06) : 3621 - 3629
  • [43] Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes
    Chee, Yeow Meng
    Dau, Son Hoang
    Ling, Alan C. H.
    Ling, San
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) : 140 - 151
  • [45] Resistor-logic demultiplexers for nanoelectronics based on constant-weight codes
    Kuekes, PJ
    Robinett, W
    Roth, RM
    Seroussi, G
    Snider, GS
    Williams, RS
    NANOTECHNOLOGY, 2006, 17 (04) : 1052 - 1061
  • [46] Multiply Constant-Weight Codes and the Reliability of Loop Physically Unclonable Functions
    Chee, Yeow Meng
    Cherif, Zouha
    Danger, Jean-Luc
    Guilley, Sylvain
    Kiah, Han Mao
    Kim, Jon-Lark
    Sole, Patrick
    Zhang, Xiande
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 7026 - 7034
  • [47] Optimal Multiply Constant-weight Codes from Generalized Howell Designs
    Wang, Changyuan
    Chang, Yanxun
    Feng, Tao
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 611 - 632
  • [48] Constant-Weight and Constant-Charge Binary Run-Length Limited Codes
    Kurmaev, Oleg F.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) : 4497 - 4515
  • [49] Constructions for optimal cyclic ternary constant-weight codes of weight four and distance six
    Lan, Liantao
    Chang, Yanxun
    DISCRETE MATHEMATICS, 2018, 341 (04) : 1010 - 1020
  • [50] Improved linear programming bound on sizes of doubly constant-weight codes
    Phan Thanh Toan
    Kim, Hyun Kwang
    Kim, Jaeseon
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 230 - 252