Multiply Constant-Weight Codes and the Reliability of Loop Physically Unclonable Functions

被引:23
|
作者
Chee, Yeow Meng [1 ]
Cherif, Zouha [2 ,3 ]
Danger, Jean-Luc [2 ,4 ]
Guilley, Sylvain [2 ,4 ]
Kiah, Han Mao [1 ]
Kim, Jon-Lark [5 ]
Sole, Patrick [2 ,6 ]
Zhang, Xiande [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
[2] Telecom ParisTech, Inst Mines Telecom, F-75634 Paris, France
[3] Univ Lyon, Lab Hubert Curien, F-42000 St Etienne, France
[4] Secure IC SAS, F-35700 Rennes, France
[5] Sogang Univ, Dept Math, Seoul 121742, South Korea
[6] King Abdulaziz Univ, Dept Math, Jeddah 22254, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
Constant-weight codes; doubly constant-weight codes; multiply constant-weight codes; physically unclonable functions; UPPER-BOUNDS; CONSTRUCTIONS; TABLE;
D O I
10.1109/TIT.2014.2359207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the class of multiply constant-weight codes to improve the reliability of certain physically unclonable function response, and extend classical coding methods to construct multiply constant-weight codes from known q-ary and constant-weight codes. We derive analogs of Johnson bounds and give constructions showing these bounds to be asymptotically tight up to a constant factor under certain conditions. We also examine the rates of multiply constant-weight codes and demonstrate that these rates are the same as those of constant-weight codes of corresponding parameters.
引用
收藏
页码:7026 / 7034
页数:9
相关论文
共 50 条
  • [1] On the Construction of Multiply Constant-Weight Codes
    Wen, Jiejing
    Fu, Fang-Wei
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2021, 32 (07) : 861 - 870
  • [2] New Bounds and Constructions for Multiply Constant-Weight Codes
    Wang, Xin
    Wei, Hengjia
    Chong Shangguan
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6315 - 6327
  • [3] CONSTANT-WEIGHT CODES
    IKENO, N
    NAKAMURA, G
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1971, 54 (08): : 35 - &
  • [4] Constructions of Optimal and Near-Optimal Multiply Constant-Weight Codes
    Chee, Yeow Meng
    Kiah, Han Mao
    Zhang, Hui
    Zhang, Xiande
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (06) : 3621 - 3629
  • [5] Optimal Multiply Constant-weight Codes from Generalized Howell Designs
    Wang, Changyuan
    Chang, Yanxun
    Feng, Tao
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 611 - 632
  • [6] Optimal Multiply Constant-weight Codes from Generalized Howell Designs
    Changyuan Wang
    Yanxun Chang
    Tao Feng
    Graphs and Combinatorics, 2019, 35 : 611 - 632
  • [7] On relative constant-weight codes
    Liu, Zihui
    Wu, Xin-Wen
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (01) : 127 - 144
  • [8] On the constructions of constant-weight codes
    Fu, FW
    Vinck, AJH
    Shen, SY
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) : 328 - 333
  • [9] OPTIMALITY OF CONSTANT-WEIGHT CODES
    NAKAMURA, G
    IKENO, N
    NAEMURA, K
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1972, 55 (07): : 32 - 37
  • [10] Perfect constant-weight codes
    Etzion, T
    Schwartz, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (09) : 2156 - 2165