Multiply Constant-Weight Codes and the Reliability of Loop Physically Unclonable Functions

被引:23
|
作者
Chee, Yeow Meng [1 ]
Cherif, Zouha [2 ,3 ]
Danger, Jean-Luc [2 ,4 ]
Guilley, Sylvain [2 ,4 ]
Kiah, Han Mao [1 ]
Kim, Jon-Lark [5 ]
Sole, Patrick [2 ,6 ]
Zhang, Xiande [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
[2] Telecom ParisTech, Inst Mines Telecom, F-75634 Paris, France
[3] Univ Lyon, Lab Hubert Curien, F-42000 St Etienne, France
[4] Secure IC SAS, F-35700 Rennes, France
[5] Sogang Univ, Dept Math, Seoul 121742, South Korea
[6] King Abdulaziz Univ, Dept Math, Jeddah 22254, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
Constant-weight codes; doubly constant-weight codes; multiply constant-weight codes; physically unclonable functions; UPPER-BOUNDS; CONSTRUCTIONS; TABLE;
D O I
10.1109/TIT.2014.2359207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the class of multiply constant-weight codes to improve the reliability of certain physically unclonable function response, and extend classical coding methods to construct multiply constant-weight codes from known q-ary and constant-weight codes. We derive analogs of Johnson bounds and give constructions showing these bounds to be asymptotically tight up to a constant factor under certain conditions. We also examine the rates of multiply constant-weight codes and demonstrate that these rates are the same as those of constant-weight codes of corresponding parameters.
引用
收藏
页码:7026 / 7034
页数:9
相关论文
共 50 条
  • [21] On the Svanstrom bound for ternary constant-weight codes
    Fu, FW
    Klove, T
    Luo, Y
    Wei, VK
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) : 2061 - 2064
  • [22] Semidefinite Programming Bounds For Constant-Weight Codes
    Polak, Sven C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (01) : 28 - 38
  • [23] On the Reliability of the Ring Oscillator Physically Unclonable Functions
    Martin, Honorio
    Vatajelu, Elena-Ioana
    Di Natale, Giorgio
    Keren, Osnat
    2019 IEEE 4TH INTERNATIONAL VERIFICATION AND SECURITY WORKSHOP (IVSW 2019), 2019, : 25 - 30
  • [24] On diameter perfect constant-weight ternary codes
    Krotov, D. S.
    DISCRETE MATHEMATICS, 2008, 308 (14) : 3104 - 3114
  • [25] Maximum disjoint bases and constant-weight codes
    Tonchev, VD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) : 333 - 334
  • [26] New inequalities for -ary constant-weight codes
    Kim, Hyun Kwang
    Phan Thanh Toan
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (02) : 369 - 381
  • [27] The probability of undetected error for binary constant-weight codes
    Xia, ST
    Fu, FW
    Jiang, Y
    Ling, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (09) : 3364 - 3373
  • [28] Optimal cyclic quaternary constant-weight codes of weight three
    Lan, Liantao
    Chang, Yanxun
    JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (04) : 174 - 192
  • [29] New Constant-Weight Codes From Propagation Rules
    Chee, Yeow Meng
    Xing, Chaoping
    Yeo, Sze Ling
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) : 1596 - 1599
  • [30] Constant-Weight Gray Codes for Local Rank Modulation
    Schwartz, Moshe
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 869 - 873