Stochastic resonance in a metal-oxide memristive device

被引:109
|
作者
Mikhaylov, A. N. [1 ]
Guseinov, D., V [1 ]
Belov, A., I [1 ]
Korolev, D. S. [1 ]
Shishmakova, V. A. [1 ]
Koryazhkina, M. N. [1 ]
Filatov, D. O. [1 ]
Gorshkov, O. N. [1 ]
Maldonado, D. [2 ]
Alonso, F. J. [3 ]
Roldan, J. B. [2 ]
Krichigin, A., V [1 ]
Agudov, N., V [1 ]
Dubkov, A. A. [1 ]
Carollo, A. [1 ,4 ]
Spagnolo, B. [1 ,4 ,5 ]
机构
[1] Lobachevsky Univ, 23-3 Gagarin Prospect, Nizhnii Novgorod 603022, Russia
[2] Univ Granada, Dept Elect & Tecnol Comp, Avd Fuentenueva S-N, Granada 18071, Spain
[3] Univ Granada, Dept Estadist & Invest Operat, Avd Fuentenueva S-N, Granada 18071, Spain
[4] Univ Palermo, Grp Interdisciplinary Theoret Phys, Dipartimento Fis & Chim Emilio Segre, Viale Sci,Edificio 18, I-90128 Palermo, Italy
[5] Ist Nazl Fis Nucl, Sez Catania, Via S Sofia 64, I-95123 Catania, Italy
关键词
Memristor; Resistive switching; Yttria-stabilized zirconium dioxide; Tantalum oxide; Time series statistical analysis; stochastic; model; Stochastic resonance; VARIABILITY; WHITE; MODEL;
D O I
10.1016/j.chaos.2021.110723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stochastic resonance phenomenon has been studied experimentally and theoretically for a state-of art metal-oxide memristive device based on yttria-stabilized zirconium dioxide and tantalum pentoxide, which exhibits bipolar filamentary resistive switching of anionic type. The effect of white Gaussian noise superimposed on the sub-threshold sinusoidal driving signal is analyzed through the time series statistics of the resistive switching parameters, the spectral response to a periodic perturbation and the signal-tonoise ratio at the output of the nonlinear system. The stabilized resistive switching and the increased memristance response are revealed in the observed regularities at an optimal noise intensity corresponding to the stochastic resonance phenomenon and interpreted using a stochastic memristor model taking into account an external noise source added to the control voltage. The obtained results clearly show that noise and fluctuations can play a constructive role in nonlinear memristive systems far from equilibrium. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multilayer Metal-Oxide Memristive Device with Stabilized Resistive Switching
    Mikhaylov, Alexey
    Belov, Alexey
    Korolev, Dmitry
    Antonov, Ivan
    Kotomina, Valentina
    Kotina, Alina
    Gryaznov, Evgeny
    Sharapov, Alexander
    Koryazhkina, Maria
    Kryukov, Ruslan
    Zubkov, Sergey
    Sushkov, Artem
    Pavlov, Dmitry
    Tikhov, Stanislav
    Morozov, Oleg
    Tetelbaum, David
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (01)
  • [2] Electroforming in Metal-Oxide Memristive Synapses
    Wang, Tao
    Shi, Yuanyuan
    Puglisi, Francesco Maria
    Chen, Shaochuan
    Zhu, Kaichen
    Zuo, Ying
    Li, Xuehua
    Jing, Xu
    Han, Tingting
    Guo, Biyu
    Bukvisova, Kristyna
    Kachtik, Lukas
    Kolibal, Miroslav
    Wen, Chao
    Lanza, Mario
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) : 11806 - 11814
  • [3] Inverted spike-rate-dependent plasticity due to charge traps in a metal-oxide memristive device
    Mishchenko, M. A.
    Bolshakov, D., I
    Lukoyanov, V., I
    Korolev, D. S.
    Belov, A., I
    Guseinov, D., V
    Matrosov, V. V.
    Kazantsev, V. B.
    Mikhaylov, A. N.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (39)
  • [4] Complementary Metal-Oxide Semiconductor and Memristive Hardware for Neuromorphic Computing
    Azghadi, Mostafa Rahimi
    Chen, Ying-Chen
    Eshraghian, Jason K.
    Chen, Jia
    Lin, Chih-Yang
    Amirsoleimani, Amirali
    Mehonic, Adnan
    Kenyon, Anthony J.
    Fowler, Burt
    Lee, Jack C.
    Chang, Yao-Feng
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (05)
  • [5] Design of Multilayer Perceptron Network Based on Metal-Oxide Memristive Devices
    Danilin, Sergey
    Shchanikov, Sergey
    Zuev, Anton
    Bordanov, Ilya
    Korolev, Dmitry
    Belov, Alexey
    Pimashkin, Alexey
    Mikhaylov, Alexey
    Kazantsev, Victor
    [J]. 12TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2019), 2019, : 533 - 538
  • [6] Synaptic behaviors and modeling of a metal oxide memristive device
    Chang, Ting
    Jo, Sung-Hyun
    Kim, Kuk-Hwan
    Sheridan, Patrick
    Gaba, Siddharth
    Lu, Wei
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (04): : 857 - 863
  • [7] Synaptic behaviors and modeling of a metal oxide memristive device
    Ting Chang
    Sung-Hyun Jo
    Kuk-Hwan Kim
    Patrick Sheridan
    Siddharth Gaba
    Wei Lu
    [J]. Applied Physics A, 2011, 102 : 857 - 863
  • [8] Integrated analog neurons inspired by mimicking synapses with metal-oxide memristive devices
    Marukame, Takao
    Sugino, Junichi
    Kitamura, Toshimitsu
    Takahashi, Koji
    Tamura, Yutaka
    Nomura, Kumiko
    Mizushima, Koichi
    Nishi, Yoshifumi
    [J]. Marukame, Takao (takao.marukame@toshiba.co.jp), 1600, IOP Publishing Ltd (59):
  • [9] Integrated analog neurons inspired by mimicking synapses with metal-oxide memristive devices
    Marukame, Takao
    Sugino, Junichi
    Kitamura, Toshimitsu
    Takahashi, Koji
    Tamura, Yutaka
    Nomura, Kumiko
    Mizushima, Koichi
    Nishi, Yoshifumi
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (04)
  • [10] Novel training method for metal-oxide memristive synapse device to overcome trade-off between linearity and dynamic range
    Seo, Jongseon
    Han, Geonhui
    Lee, Daeseok
    [J]. NANOTECHNOLOGY, 2022, 33 (36)