Inverted spike-rate-dependent plasticity due to charge traps in a metal-oxide memristive device

被引:6
|
作者
Mishchenko, M. A. [1 ]
Bolshakov, D., I [1 ]
Lukoyanov, V., I [1 ]
Korolev, D. S. [1 ]
Belov, A., I [1 ]
Guseinov, D., V [1 ]
Matrosov, V. V. [1 ]
Kazantsev, V. B. [1 ,2 ,3 ]
Mikhaylov, A. N. [1 ]
机构
[1] Lobachevsky Univ, Nizhnii Novgorod, Russia
[2] Innopolis Univ, Innopolis, Russia
[3] Immanuel Kant Balt Fed Univ, Kaliningrad, Russia
基金
俄罗斯科学基金会;
关键词
memristor; resistive switching; second-order dynamical system; charge trap; spike-rate-dependent plasticity; phase-locked loop generator; neural synchrony; SYNAPTIC PLASTICITY; DYNAMICS; IMPLEMENTATION; MEMORY; MODEL;
D O I
10.1088/1361-6463/ac79de
中图分类号
O59 [应用物理学];
学科分类号
摘要
We develop a model of Au/Ta/ZrO2(Y)/Ta2O5/TiN/Ti memristive devices and demonstrate, both experimentally and numerically, an inverted spike-rate-dependent plasticity effect. The effect consists of the reduction of the learning rate with an increase in the frequency of spikes generated by the phase-locked loop neuron. The memristor model uses two internal state variables representing the number of complete filaments and the concentration of the charged traps. While the former state variable defines the device resistance and is associated with the distribution of oxygen vacancies, the latter affects the internal electric field and modulates the migration of vacancies. Several neural circuit configurations that include pairs and populations of memristively coupled neurons are analyzed numerically. The results of this study may contribute to the development of large-scale self-organized artificial cognitive systems based on neural synchrony.
引用
收藏
页数:13
相关论文
共 19 条
  • [1] Implementation of Memristive Neural Networks with Spike-rate-dependent Plasticity Synapses
    Zhang, Yide
    Zeng, Zhigang
    Wen, Shiping
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2226 - 2233
  • [2] Synaptic Properties of Geopolymer Memristors: Synaptic Plasticity, Spike-Rate-Dependent Plasticity, and Spike-Timing-Dependent Plasticity
    Shakib, Mahmudul Alam
    Gao, Zhaolin
    Lamuta, Caterina
    [J]. ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (09) : 4875 - 4884
  • [3] Fully Unsupervised Spike-Rate-Dependent Plasticity Learning With Oxide- Based Memory Devices
    Kumar, Manoj
    Bezugam, Sai Sukruth
    Khan, Sufyan
    Suri, Manan
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (07) : 3346 - 3352
  • [4] Stochastic resonance in a metal-oxide memristive device
    Mikhaylov, A. N.
    Guseinov, D., V
    Belov, A., I
    Korolev, D. S.
    Shishmakova, V. A.
    Koryazhkina, M. N.
    Filatov, D. O.
    Gorshkov, O. N.
    Maldonado, D.
    Alonso, F. J.
    Roldan, J. B.
    Krichigin, A., V
    Agudov, N., V
    Dubkov, A. A.
    Carollo, A.
    Spagnolo, B.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 144
  • [5] Binary Resistive-Switching-Device-Based Electronic Synapse with Spike-Rate-Dependent Plasticity for Online Learning
    Huang, Peng
    Li, Zefan
    Dong, Zhen
    Han, Runze
    Zhou, Zheng
    Zhu, Dongbin
    Liu, Lifeng
    Liu, Xiaoyan
    Kang, Jinfeng
    [J]. ACS APPLIED ELECTRONIC MATERIALS, 2019, 1 (06) : 845 - 853
  • [6] Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors
    M. Prezioso
    F. Merrikh Bayat
    B. Hoskins
    K. Likharev
    D. Strukov
    [J]. Scientific Reports, 6
  • [7] Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors
    Prezioso, M.
    Bayat, F. Merrikh
    Hoskins, B.
    Likharev, K.
    Strukov, D.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [8] Multilayer Metal-Oxide Memristive Device with Stabilized Resistive Switching
    Mikhaylov, Alexey
    Belov, Alexey
    Korolev, Dmitry
    Antonov, Ivan
    Kotomina, Valentina
    Kotina, Alina
    Gryaznov, Evgeny
    Sharapov, Alexander
    Koryazhkina, Maria
    Kryukov, Ruslan
    Zubkov, Sergey
    Sushkov, Artem
    Pavlov, Dmitry
    Tikhov, Stanislav
    Morozov, Oleg
    Tetelbaum, David
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (01)
  • [9] Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory
    Ren, Zheng Yu
    Zhu, Li Qiang
    Guo, Yan Bo
    Long, Ting Yu
    Yu, Fei
    Xiao, Hui
    Lu, Hong Liang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7833 - 7839
  • [10] Interfacial Charge Dynamics in Metal-Oxide Semiconductor Structures: The Effect of Deep Traps and Acceptor Levels in GaN
    Sharabani, Y.
    Palmieri, Andrea
    Kyrtsos, Alexandros
    Matsubara, Masahiko
    Bellotti, Enrico
    [J]. PHYSICAL REVIEW APPLIED, 2020, 13 (01):