Proxy ensemble geometric phase and proxy index of time-reversal invariant topological insulators at finite temperatures

被引:1
|
作者
Pi, Aixin [1 ]
Zhang, Ye [1 ]
He, Yan [1 ]
Chien, Chih-Chun [2 ]
机构
[1] Sichuan Univ, Coll Phys, Chengdu 610064, Sichuan, Peoples R China
[2] Univ Calif Merced, Dept Phys, Merced, CA 95343 USA
基金
美国国家科学基金会;
关键词
PARALLEL TRANSPORT;
D O I
10.1103/PhysRevB.105.085418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ensemble geometric phase (EGP) has been proposed as a topological indicator for finite-temperature quantum systems. The ensemble Wilson loop, or the transfer matrix, contains the crucial information in the EGP construction. We propose a proxy index and a proxy EGP directly from the transfer matrix and apply them to time-reversal invariant topological insulators exemplified by the Bernevig-Hughes-Zhang (BHZ) and Kane-Mele (KM) models. The quantized proxy index and proxy EGP smoothly generalize the ground-state topological index to finite temperatures. For the BHZ model, a comparison with another topological indicator, the Uhlmann phase, shows different transition behavior with temperature. For the KM model, the EGP have been generalized to the time-reversal EGP previously, but the proxy EGP does not require any splitting of the contributions. The proxy index and proxy EGP thus offer an efficient means for characterizing finite-temperature topological properties.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Slow quenches in two-dimensional time-reversal symmetric Z2 topological insulators
    Ulcakar, Lara
    Mravlje, Jernej
    Ramsak, Anton
    Rejec, Tomaz
    PHYSICAL REVIEW B, 2018, 97 (19)
  • [42] Manipulation of Majorana-Kramers qubit and its tolerance in time-reversal invariant topological superconductor
    Tanaka, Yuki
    Sanno, Takumi
    Mizushima, Takeshi
    Fujimoto, Satoshi
    PHYSICAL REVIEW B, 2022, 106 (01)
  • [43] Two-Dimensional Time-Reversal-Invariant Topological Insulators via Fredholm Theory
    Eli Fonseca
    Jacob Shapiro
    Ahmed Sheta
    Angela Wang
    Kohtaro Yamakawa
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [44] Two-Dimensional Time-Reversal-Invariant Topological Insulators via Fredholm Theory
    Fonseca, Eli
    Shapiro, Jacob
    Sheta, Ahmed
    Wang, Angela
    Yamakawa, Kohtaro
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2020, 23 (03)
  • [45] Topological phase transitions and quantum oscillations in systems with broken time-reversal symmetry
    Yu, Xiang-Long
    Wu, Jiansheng
    PHYSICAL REVIEW B, 2021, 103 (20)
  • [46] Time-reversal invariant resonant backscattering on a topological insulator surface driven by a time-periodic gate voltage
    Ming-Xun Deng
    R. Ma
    Wei Luo
    R. Shen
    L. Sheng
    D. Y. Xing
    Scientific Reports, 8
  • [47] Time-reversal invariant resonant backscattering on a topological insulator surface driven by a time-periodic gate voltage
    Deng, Ming-Xun
    Ma, R.
    Luo, Wei
    Shen, R.
    Sheng, L.
    Xing, D. Y.
    SCIENTIFIC REPORTS, 2018, 8
  • [48] Fermionic atoms in a spin-dependent optical lattice potential: Topological insulators with broken time-reversal symmetry
    Kuzmenko, Igor
    Brewczyk, Miroslaw
    Lach, Grzegorz
    Trippenbach, Marek
    Band, Y.B.
    Physical Review B, 2024, 110 (20)
  • [49] Time-reversal invariant topological moiré flat band: A platform for the fractional quantum spin Hall effect
    Wu, Yi-Ming
    Shaffer, Daniel
    Wu, Zhengzhi
    Santos, Luiz H.
    PHYSICAL REVIEW B, 2024, 109 (11)
  • [50] Z2 topological invariants for mixed states of fermions in time-reversal invariant band structures
    Wawer, Lukas
    Fleischhauer, Michael
    PHYSICAL REVIEW B, 2021, 104 (21)