Proxy ensemble geometric phase and proxy index of time-reversal invariant topological insulators at finite temperatures

被引:1
|
作者
Pi, Aixin [1 ]
Zhang, Ye [1 ]
He, Yan [1 ]
Chien, Chih-Chun [2 ]
机构
[1] Sichuan Univ, Coll Phys, Chengdu 610064, Sichuan, Peoples R China
[2] Univ Calif Merced, Dept Phys, Merced, CA 95343 USA
基金
美国国家科学基金会;
关键词
PARALLEL TRANSPORT;
D O I
10.1103/PhysRevB.105.085418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ensemble geometric phase (EGP) has been proposed as a topological indicator for finite-temperature quantum systems. The ensemble Wilson loop, or the transfer matrix, contains the crucial information in the EGP construction. We propose a proxy index and a proxy EGP directly from the transfer matrix and apply them to time-reversal invariant topological insulators exemplified by the Bernevig-Hughes-Zhang (BHZ) and Kane-Mele (KM) models. The quantized proxy index and proxy EGP smoothly generalize the ground-state topological index to finite temperatures. For the BHZ model, a comparison with another topological indicator, the Uhlmann phase, shows different transition behavior with temperature. For the KM model, the EGP have been generalized to the time-reversal EGP previously, but the proxy EGP does not require any splitting of the contributions. The proxy index and proxy EGP thus offer an efficient means for characterizing finite-temperature topological properties.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Time-reversal invariant topological gapped phases in bilayer Dirac materials
    Feng, Guan-Hao
    Zhang, Hong-Hao
    Yan, Zhongbo
    PHYSICAL REVIEW B, 2022, 106 (06)
  • [22] Spin-Orbit-Free Topological Insulators without Time-Reversal Symmetry
    Alexandradinata, A.
    Fang, Chen
    Gilbert, Matthew J.
    Bernevig, B. Andrei
    PHYSICAL REVIEW LETTERS, 2014, 113 (11)
  • [23] Interacting crystalline topological insulators in two-dimensions with time-reversal symmetry
    Soldini, Martina O.
    Aksoy, Omer M.
    Neupert, Titus
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [24] Absolutely continuous edge spectrum of topological insulators with an odd time-reversal symmetry
    Bols, Alex
    Cedzich, Christopher
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (04)
  • [25] No-go theorem for a time-reversal invariant topological phase in noninteracting systems coupled to conventional superconductors
    Haim, Arbel
    Berg, Erez
    Flensberg, Karsten
    Oreg, Yuval
    PHYSICAL REVIEW B, 2016, 94 (16)
  • [26] Gaussian unitary ensemble statistics in a time-reversal invariant microwave triangular billiard
    Dembowski, C
    Gräf, HD
    Heine, A
    Rehfeld, H
    Richter, A
    Schmit, C
    PHYSICAL REVIEW E, 2000, 62 (04) : R4516 - R4519
  • [27] Topological phases in a three-dimensional topological insulator with a time-reversal invariant external field
    Guo, Xiaoyong
    Ren, Xiaobin
    Wang, Gangzhi
    Peng, Jie
    PHYSICA SCRIPTA, 2014, 89 (10)
  • [28] Measuring the spin polarization of a ferromagnet: An application of time-reversal invariant topological superconductor
    Yan, Zhongbo
    Wan, Shaolong
    EPL, 2015, 111 (04)
  • [29] Tunneling magnetoresistance in junctions composed of ferromagnets and time-reversal invariant topological superconductors
    Yan, Zhongbo
    Wan, Shaolong
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [30] Time-Reversal Invariant Topological Superconductivity in Quasi-One-Dimensional Structures
    Mammadova, S.
    Nakhmedov, E.
    Alekperov, O.
    ACTA PHYSICA POLONICA A, 2016, 129 (04) : 800 - 802