Algorithm 1017: fuzzyreg: An R Package for Fitting Fuzzy Regression Models

被引:8
|
作者
Skrabanek, Pavel [1 ]
Martinkova, Natalia [2 ,3 ]
机构
[1] Brno Univ Technol, Inst Automat & Comp Sci, Tech 2, Brno 61669, Czech Republic
[2] Czech Acad Sci, Inst Vertebrate Biol, Kvetna 8, Brno 60365, Czech Republic
[3] Masaryk Univ, RECETOX, Kamenice 753-5, Brno 62500, Czech Republic
来源
关键词
Fuzzy regression; fuzzy set; possibilistic-based fuzzy regression; statistics-based fuzzy regression; R; LINEAR-REGRESSION; QUALITY; YIELD;
D O I
10.1145/3451389
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Fuzzy regression provides an alternative to statistical regression when the model is indefinite, the relationships between model parameters are vague, the sample size is low, or the data are hierarchically structured. Such cases allow to consider the choice of a regression model based on the fuzzy set theory. In fuzzyreg, we implement fuzzy linear regression methods that differ in the expectations of observational data types, outlier handling, and parameter estimation method. We provide a wrapper function that prepares data for fitting fuzzy linear models with the respective methods from a syntax established in R for fitting regression models. The function fuzzylm thus provides a novel functionality for R through standardized operations with fuzzy numbers. Additional functions allow for conversion of real-value variables to be fuzzy numbers, printing, summarizing, model plotting, and calculation of model predictions from new data using supporting functions that perform arithmetic operations with triangular fuzzy numbers. Goodness of fit and total error of the fit measures allow model comparisons. The package contains a dataset named bats with measurements of temperatures of hibernating bats and the mean annual surface temperature reflecting the climate at the sampling sites. The predictions from fuzzy linear models fitted to this dataset correspond well to the observed biological phenomenon. Fuzzy linear regression has great potential in predictive modeling where the data structure prevents statistical analysis and the modeled process exhibits inherent fuzziness.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] fitdistrplus: An R Package for Fitting Distributions
    Delignette-Muller, Marie Laure
    Dutang, Christophe
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 64 (04): : 1 - 34
  • [22] A new algorithm for fitting semi-parametric variance regression models
    Kristy P. Robledo
    Ian C. Marschner
    Computational Statistics, 2021, 36 : 2313 - 2335
  • [23] A new algorithm for fitting semi-parametric variance regression models
    Robledo, Kristy P.
    Marschner, Ian C.
    COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2313 - 2335
  • [24] Copula Regression Spline Sample Selection Models: The R Package SemiParSampleSel
    Wojtys, Malgorzata
    Marra, Giampiero
    Radice, Rosalba
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 71 (06): : 1 - 66
  • [25] EBglmnet: a comprehensive R package for sparse generalized linear regression models
    Huang, Anhui
    Liu, Dianting
    BIOINFORMATICS, 2021, 37 (11) : 1627 - 1629
  • [26] AgroReg: main regression models in agricultural sciences implemented as an R Package
    Shimizu, Gabriel Danilo
    Azeredo Goncalves, Leandro Simoes
    SCIENTIA AGRICOLA, 2023, 80
  • [27] CensSpatial: An R package for estimation and diagnostics in spatial censored regression models
    Ordonez, Jose A.
    Galarza, Christian E.
    Lachos, Victor H.
    SOFTWAREX, 2024, 27
  • [28] spsur: An R Package for Dealing with Spatial Seemingly Unrelated Regression Models
    Minguez, Roman
    Lopez, Fernando A.
    Mur, Jesus
    JOURNAL OF STATISTICAL SOFTWARE, 2022, 104 (11): : 1 - 43
  • [29] Mixed Frequency Data Sampling Regression Models: The R Package midasr
    Ghysels, Eric
    Kvedaras, Virmantas
    Zemlys, Vaidotas
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 72 (04): : 1 - 35
  • [30] Technical note: An R package for fitting generalized linear mixed models in animal breeding
    Vazquez, A. I.
    Bates, D. M.
    Rosa, G. J. M.
    Gianola, D.
    Weigel, K. A.
    JOURNAL OF ANIMAL SCIENCE, 2010, 88 (02) : 497 - 504