CensSpatial: An R package for estimation and diagnostics in spatial censored regression models

被引:0
|
作者
Ordonez, Jose A. [1 ]
Galarza, Christian E. [2 ]
Lachos, Victor H. [3 ]
机构
[1] Univ Estadual Campinas, BR-13083970 Campinas, Brazil
[2] Escuela Super Politecn Litoral, Guayaquil 090112, Ecuador
[3] Univ Connecticut, Storrs, CT 06269 USA
基金
巴西圣保罗研究基金会;
关键词
Spatial statistics; Forecasting; Influence diagnostics; Censoring; PREDICTION;
D O I
10.1016/j.softx.2024.101762
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
CensSpatial is an R package for analyzing spatial censored data through linear models. It offers tools for simulating, estimating, making predictions and performing local influence diagnostics for outlier detection. The package also provides four algorithms for estimation and prediction. One of them is based on the stochastic approximation of the EM (SAEM) algorithm, which allows easy and fast estimation of the parameters of linear spatial models when censoring is present. The package provides worthy measures to perform diagnostics analysis using the Hessian matrix of the completed log-likelihood function.
引用
收藏
页数:4
相关论文
共 50 条
  • [2] Influence diagnostics in spatial models with censored response
    Lachos, Victor H.
    Matos, Larissa A.
    Barbosa, Thais S.
    Garay, Aldo M.
    Dey, Dipak K.
    ENVIRONMETRICS, 2017, 28 (07)
  • [3] Influence diagnostics for censored regression models with autoregressive errors
    Schumacher, Fernanda L.
    Lachos, Victor H.
    Vilca-Labra, Filidor E.
    Castro, Luis M.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2018, 60 (02) : 209 - 229
  • [4] spsur: An R Package for Dealing with Spatial Seemingly Unrelated Regression Models
    Minguez, Roman
    Lopez, Fernando A.
    Mur, Jesus
    JOURNAL OF STATISTICAL SOFTWARE, 2022, 104 (11): : 1 - 43
  • [5] SmoothHazard: An R Package for Fitting Regression Models to Interval-Censored Observations of Illness-Death Models
    Touraine, Celia
    Gerds, Thomas A.
    Joly, Pierre
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 79 (07): : 1 - 22
  • [6] Estimation and diagnostics for partially linear censored regression models based on heavy-tailed distributions
    Lemus, Marcela Nunez
    Lachos, Victor H.
    Galarza, Christian E.
    Matos, Larissa A.
    STATISTICS AND ITS INTERFACE, 2021, 14 (02) : 165 - 182
  • [7] Density and hazard estimation in censored regression models
    Van Keilegom, I
    Veraverbeke, N
    BERNOULLI, 2002, 8 (05) : 607 - 625
  • [8] Sequential estimation of censored quantile regression models
    Chen, Songnian
    JOURNAL OF ECONOMETRICS, 2018, 207 (01) : 30 - 52
  • [10] LASSO and shrinkage estimation in Weibull censored regression models
    Ahmed, S. Ejaz
    Hossain, Shakhawat
    Doksum, Kjell A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) : 1273 - 1284