Influence diagnostics for censored regression models with autoregressive errors

被引:3
|
作者
Schumacher, Fernanda L. [1 ]
Lachos, Victor H. [2 ]
Vilca-Labra, Filidor E. [3 ]
Castro, Luis M. [4 ]
机构
[1] IBGE, Pesquisas, Brasilia, DF, Brazil
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Estadual Campinas, Dept Estat, Campinas, SP, Brazil
[4] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
关键词
Autoregressive AR(p) models; censored data; influential observations; limit of detection; SAEM algorithm; MIXED-EFFECTS MODELS; LOCAL INFLUENCE;
D O I
10.1111/anzs.12229
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Observations collected over time are often autocorrelated rather than independent, and sometimes include observations below or above detection limits (i.e. censored values reported as less or more than a level of detection) and/or missing data. Practitioners commonly disregard censored data cases or replace these observations with some function of the limit of detection, which often results in biased estimates. Moreover, parameter estimation can be greatly affected by the presence of influential observations in the data. In this paper we derive local influence diagnostic measures for censored regression models with autoregressive errors of order p (hereafter, AR(p)-CR models) on the basis of the Q-function under three useful perturbation schemes. In order to account for censoring in a likelihood-based estimation procedure for AR(p)-CR models, we used a stochastic approximation version of the expectation-maximisation algorithm. The accuracy of the local influence diagnostic measure in detecting influential observations is explored through the analysis of empirical studies. The proposed methods are illustrated using data, from a study of total phosphorus concentration, that contain left-censored observations. These methods are implemented in the <sans-serif>R</sans-serif> package ARCensReg.
引用
收藏
页码:209 / 229
页数:21
相关论文
共 50 条
  • [2] Censored regression models with autoregressive errors: A likelihood-based perspective
    Schumacher, Fernanda L.
    Lachos, Victor H.
    Dey, Dipak K.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 375 - 392
  • [3] Influence diagnostics for Student-t censored linear regression models
    Massuia, Monique B.
    Barbosa Cabral, Celso Romulo
    Matos, Larissa A.
    Lachos, Victor H.
    STATISTICS, 2015, 49 (05) : 1074 - 1094
  • [4] Influence diagnostics for skew-t censored linear regression models
    Oliveira, Marcos S.
    Oliveira, Daniela C. R.
    Lachos, Victor H.
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (06) : 605 - 629
  • [5] Influence diagnostics for linear models with first-order autoregressive elliptical errors
    Paula, Gilberto A.
    Medeiros, Marcio
    Vilca-Labra, Filidor E.
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (03) : 339 - 346
  • [6] Influence diagnostics in log-Birnbaum-Saunders regression models with censored data
    Leiva, Victor
    Barros, Michelli
    Paula, Gilberto A.
    Galea, Manuel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 5694 - 5707
  • [7] Mixed-effects models for censored data with autoregressive errors
    Olivari, Rommy C.
    Garay, Aldo M.
    Lachos, Victor H.
    Matos, Larissa A.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2021, 31 (03) : 273 - 294
  • [8] Optimal designs for regression models with autoregressive errors
    Dette, Holger
    Pepelyshev, Andrey
    Zhigljaysky, Anatoly
    STATISTICS & PROBABILITY LETTERS, 2016, 116 : 107 - 115
  • [9] Censored autoregressive regression models with Student-t innovations
    Valeriano, Katherine A. L.
    Schumacher, Fernanda L.
    Galarza, Christian E.
    Matos, Larissa A.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (03): : 804 - 828
  • [10] On influence diagnostics in elliptical multivariate regression models with equicorrelated random errors
    Ibacache-Pulgar, German
    Paula, Gilberto A.
    Galea, Manuel
    STATISTICAL METHODOLOGY, 2014, 16 : 14 - 31