Influence diagnostics for censored regression models with autoregressive errors

被引:3
|
作者
Schumacher, Fernanda L. [1 ]
Lachos, Victor H. [2 ]
Vilca-Labra, Filidor E. [3 ]
Castro, Luis M. [4 ]
机构
[1] IBGE, Pesquisas, Brasilia, DF, Brazil
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Estadual Campinas, Dept Estat, Campinas, SP, Brazil
[4] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
关键词
Autoregressive AR(p) models; censored data; influential observations; limit of detection; SAEM algorithm; MIXED-EFFECTS MODELS; LOCAL INFLUENCE;
D O I
10.1111/anzs.12229
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Observations collected over time are often autocorrelated rather than independent, and sometimes include observations below or above detection limits (i.e. censored values reported as less or more than a level of detection) and/or missing data. Practitioners commonly disregard censored data cases or replace these observations with some function of the limit of detection, which often results in biased estimates. Moreover, parameter estimation can be greatly affected by the presence of influential observations in the data. In this paper we derive local influence diagnostic measures for censored regression models with autoregressive errors of order p (hereafter, AR(p)-CR models) on the basis of the Q-function under three useful perturbation schemes. In order to account for censoring in a likelihood-based estimation procedure for AR(p)-CR models, we used a stochastic approximation version of the expectation-maximisation algorithm. The accuracy of the local influence diagnostic measure in detecting influential observations is explored through the analysis of empirical studies. The proposed methods are illustrated using data, from a study of total phosphorus concentration, that contain left-censored observations. These methods are implemented in the <sans-serif>R</sans-serif> package ARCensReg.
引用
收藏
页码:209 / 229
页数:21
相关论文
共 50 条
  • [41] Bayesian analysis of linear regression models with autoregressive symmetrical errors and incomplete data
    Garay, Aldo M.
    Medina, Francyelle L.
    de Freitas, Suelem Torres
    Lachos, Victor H.
    STATISTICAL PAPERS, 2024, 65 (09) : 5649 - 5690
  • [42] SEMIPARAMETRIC ESTIMATION OF CENSORED SPATIAL AUTOREGRESSIVE MODELS
    Hoshino, Tadao
    ECONOMETRIC THEORY, 2020, 36 (01) : 48 - 85
  • [43] Diagnostics for a class of survival regression models with heavy-tailed errors
    Li, Ai-Ping
    Xie, Feng-Chang
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4204 - 4214
  • [44] Semiparametric censored regression models
    Chay, KY
    Powell, JL
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 29 - 42
  • [45] Influence diagnostics in heteroscedastic and/or autoregressive nonlinear elliptical models for correlated data
    Russo, Cibele M.
    Paula, Gilberto A.
    Cysneiros, Francisco Jose A.
    Aoki, Reiko
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (05) : 1049 - 1067
  • [46] Additive models in censored regression
    de Una Alvarez, Jacobo
    Roca Pardinas, Javier
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (09) : 3490 - 3501
  • [47] Errors in variables regression with value censored data
    Hawkins, Douglas M.
    Weckwerth, Christina
    JOURNAL OF CHEMOMETRICS, 2016, 30 (06) : 332 - 335
  • [48] CENSORED QUANTILE REGRESSION WITH COVARIATE MEASUREMENT ERRORS
    Ma, Yanyuan
    Yin, Guosheng
    STATISTICA SINICA, 2011, 21 (02) : 949 - 971
  • [49] Influence diagnostics in a general class of beta regression models
    Andréa V. Rocha
    Alexandre B. Simas
    TEST, 2011, 20 : 95 - 119
  • [50] Influence diagnostics in mixed effects logistic regression models
    Tapia, Alejandra
    Leiva, Victor
    del Pilar Diaz, Maria
    Giampaoli, Viviana
    TEST, 2019, 28 (03) : 920 - 942