Influence diagnostics in mixed effects logistic regression models

被引:13
|
作者
Tapia, Alejandra [1 ]
Leiva, Victor [2 ]
del Pilar Diaz, Maria [3 ,4 ]
Giampaoli, Viviana [5 ]
机构
[1] Univ Austral Chile, Inst Stat, Fac Econ & Adm Sci, Valdivia, Chile
[2] Pontificia Univ Catolica Valparaiso, Sch Ind Engn, Valparaiso, Chile
[3] Univ Nacl Cordoba, Sch Nutr, Fac Med Sci, Cordoba, Argentina
[4] Univ Nacl Cordoba, INICSA CONICET, Cordoba, Argentina
[5] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
关键词
Approximation of integrals; Correlated binary responses; Metropolis-Hastings and Monte Carlo methods; Probability of success; R software; LOCAL INFLUENCE; MAXIMUM-LIKELIHOOD; PERTURBATION SELECTION; INCOMPLETE-DATA; ALGORITHMS;
D O I
10.1007/s11749-018-0613-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Correlated binary responses are commonly described by mixed effects logistic regression models. This article derives a diagnostic methodology based on the Q-displacement function to investigate local influence of the responses in the maximum likelihood estimates of the parameters and in the predictive performance of the mixed effects logistic regression model. An appropriate perturbation strategy of the probability of success is established, as a form of assessing the perturbation in the response. The diagnostic methodology is evaluated with Monte Carlo simulations. Illustrations with two real-world data sets (balanced and unbalanced) are conducted to show the potential of the proposed methodology.
引用
收藏
页码:920 / 942
页数:23
相关论文
共 50 条
  • [1] Influence diagnostics in mixed effects logistic regression models
    Alejandra Tapia
    Victor Leiva
    Maria del Pilar Diaz
    Viviana Giampaoli
    [J]. TEST, 2019, 28 : 920 - 942
  • [2] Diagnostics in logistic regression models
    Sen Roy, Sugata
    Guria, Sibnarayan
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (02) : 89 - 94
  • [3] Diagnostics in logistic regression models
    Sugata Sen Roy
    Sibnarayan Guri
    [J]. Journal of the Korean Statistical Society, 2008, 37 : 89 - 94
  • [4] EXTENDING THE INTERPRETATION AND UTILITY OF MIXED EFFECTS LOGISTIC-REGRESSION MODELS
    ATWILL, ER
    MOHAMMED, HO
    SCARLETT, JM
    MCCULLOCH, CE
    [J]. PREVENTIVE VETERINARY MEDICINE, 1995, 24 (03) : 187 - 201
  • [5] Empirical Bayes estimation of random effects parameters in mixed effects logistic regression models
    Ten Have, TR
    Localio, AR
    [J]. BIOMETRICS, 1999, 55 (04) : 1022 - 1029
  • [6] Influence diagnostics in semiparametric regression models
    Kim, C
    Park, BU
    Kim, W
    [J]. STATISTICS & PROBABILITY LETTERS, 2002, 60 (01) : 49 - 58
  • [7] Logistic regression diagnostics in ridge regression
    M. Revan Özkale
    Stanley Lemeshow
    Rodney Sturdivant
    [J]. Computational Statistics, 2018, 33 : 563 - 593
  • [8] Logistic regression diagnostics in ridge regression
    Ozkale, M. Revan
    Lemeshow, Stanley
    Sturdivant, Rodney
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (02) : 563 - 593
  • [9] Diagnostics of multiple group influential observations for logistic regression models
    Coskun, Burcin
    Alpu, O.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (16) : 3118 - 3136
  • [10] Influence diagnostics in nonlinear mixed-effects elliptical models
    Russo, Cibele M.
    Paula, Gilberto A.
    Aoki, Reiko
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4143 - 4156