Influence diagnostics in nonlinear mixed-effects elliptical models

被引:31
|
作者
Russo, Cibele M. [1 ]
Paula, Gilberto A. [1 ]
Aoki, Reiko [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estatist, BR-05311970 Sao Paulo, Brazil
[2] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
LOCAL INFLUENCE; REGRESSION-MODELS; DELETION DIAGNOSTICS; VARIANCE; ERRORS;
D O I
10.1016/j.csda.2009.05.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we propose and analyze nonlinear elliptical models for longitudinal data, which represent an alternative to gaussian models in the cases of heavy tails, for instance. The elliptical distributions may help to control the influence of the observations in the parameter estimates by naturally attributing different weights for each case. We consider random effects to introduce the within-group correlation and work with the marginal model without requiring numerical integration. An iterative algorithm to obtain maximum likelihood estimates for the parameters is presented, as well as diagnostic results based on residual distances and local influence [Cook, D., 1986. Assessment of local influence. journal of the Royal Statistical Society - Series B 48 (2), 133-169; Cook D., 1987. Influence assessment. journal of Applied Statistics 14 (2),117-131; Escobar, L.A., Meeker, W.Q., 1992, Assessing influence in regression analysis with censored data, Biometrics 48, 507-528]. As numerical illustration, we apply the obtained results to a kinetics longitudinal data set presented in [Vonesh, E.F., Carter, R.L., 1992. Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics 48, 1-17], which was analyzed under the assumption of normality. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4143 / 4156
页数:14
相关论文
共 50 条
  • [1] A note on influence diagnostics in nonlinear mixed-effects elliptical models
    Patriota, Alexandre G.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 218 - 225
  • [2] Influence diagnostics in linear and nonlinear mixed-effects models with censored data
    Matos, Larissa A.
    Lachos, Victor H.
    Balakrishnan, N.
    Labra, Filidor V.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 450 - 464
  • [3] Assessment of variance components in nonlinear mixed-effects elliptical models
    Russo, Cibele M.
    Aoki, Reiko
    Paula, Gilberto A.
    [J]. TEST, 2012, 21 (03) : 519 - 545
  • [4] Assessment of variance components in nonlinear mixed-effects elliptical models
    Cibele M. Russo
    Reiko Aoki
    Gilberto A. Paula
    [J]. TEST, 2012, 21 : 519 - 545
  • [5] Influence analyses of nonlinear mixed-effects models
    Lee, SY
    Xu, L
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) : 321 - 341
  • [6] Influence diagnostics for elliptical semiparametric mixed models
    Ibacache-Pulgar, German
    Paula, Gilberto A.
    Galea, Manuel
    [J]. STATISTICAL MODELLING, 2012, 12 (02) : 165 - 193
  • [7] Randomly Truncated Nonlinear Mixed-Effects Models
    Carolina Costa Mota Paraíba
    Carlos Alberto Ribeiro Diniz
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21 : 295 - 313
  • [8] Randomly Truncated Nonlinear Mixed-Effects Models
    Mota Paraiba, Carolina Costa
    Ribeiro Diniz, Carlos Alberto
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2016, 21 (02) : 295 - 313
  • [9] Nonlinear Mixed-Effects Models for PET Data
    Chen, Yakuan
    Goldsmith, Jeff
    Ogden, R. Todd
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (03) : 881 - 891
  • [10] Influence analysis for linear mixed-effects models
    Demidenko, E
    Stukel, TA
    [J]. STATISTICS IN MEDICINE, 2005, 24 (06) : 893 - 909