Influence diagnostics in mixed effects logistic regression models

被引:13
|
作者
Tapia, Alejandra [1 ]
Leiva, Victor [2 ]
del Pilar Diaz, Maria [3 ,4 ]
Giampaoli, Viviana [5 ]
机构
[1] Univ Austral Chile, Inst Stat, Fac Econ & Adm Sci, Valdivia, Chile
[2] Pontificia Univ Catolica Valparaiso, Sch Ind Engn, Valparaiso, Chile
[3] Univ Nacl Cordoba, Sch Nutr, Fac Med Sci, Cordoba, Argentina
[4] Univ Nacl Cordoba, INICSA CONICET, Cordoba, Argentina
[5] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
关键词
Approximation of integrals; Correlated binary responses; Metropolis-Hastings and Monte Carlo methods; Probability of success; R software; LOCAL INFLUENCE; MAXIMUM-LIKELIHOOD; PERTURBATION SELECTION; INCOMPLETE-DATA; ALGORITHMS;
D O I
10.1007/s11749-018-0613-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Correlated binary responses are commonly described by mixed effects logistic regression models. This article derives a diagnostic methodology based on the Q-displacement function to investigate local influence of the responses in the maximum likelihood estimates of the parameters and in the predictive performance of the mixed effects logistic regression model. An appropriate perturbation strategy of the probability of success is established, as a form of assessing the perturbation in the response. The diagnostic methodology is evaluated with Monte Carlo simulations. Illustrations with two real-world data sets (balanced and unbalanced) are conducted to show the potential of the proposed methodology.
引用
收藏
页码:920 / 942
页数:23
相关论文
共 50 条
  • [41] Influence diagnostics in Birnbaum-Saunders nonlinear regression models
    Lemonte, Artur J.
    Patriota, Alexandre G.
    [J]. JOURNAL OF APPLIED STATISTICS, 2011, 38 (05) : 871 - 884
  • [42] On influence diagnostics in multivariate regression models under elliptical distributions
    Liu, Shuangzhe
    [J]. Contributions to Probability and Statistics: Applications and Challenges, 2006, : 129 - 141
  • [43] On the Complexity of Logistic Regression Models
    Bulso, Nicola
    Marsili, Matteo
    Roudi, Yasser
    [J]. NEURAL COMPUTATION, 2019, 31 (08) : 1592 - 1623
  • [44] Endogeneity in logistic regression models
    Avery, G
    [J]. EMERGING INFECTIOUS DISEASES, 2005, 11 (03) : 503 - 504
  • [45] Multicollinearity in Logistic Regression Models
    Bayman, Emine Ozgur
    Dexter, Franklin
    [J]. ANESTHESIA AND ANALGESIA, 2021, 133 (02): : 362 - 365
  • [46] Uncertain logistic regression models
    Gao, Jinling
    Gong, Zengtai
    [J]. AIMS MATHEMATICS, 2024, 9 (05): : 10478 - 10493
  • [47] Using mixed effects logistic regression models for complex survey data on malaria rapid diagnostic test results
    Chigozie Louisa J. Ugwu
    Temesgen T. Zewotir
    [J]. Malaria Journal, 17
  • [48] Using mixed effects logistic regression models for complex survey data on malaria rapid diagnostic test results
    Ugwu, Chigozie Louisa J.
    Zewotir, Temesgen T.
    [J]. MALARIA JOURNAL, 2018, 17
  • [49] Influence of Logistic Regression Models For Prediction and Analysis of Diabetes Risk Factors
    Maulana, Yufri Isnaini Rochmat
    Badriyah, Tessy
    Syarif, Iwan
    [J]. EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2018, 6 (01) : 151 - 167
  • [50] Wasserstein Logistic Regression with Mixed Features
    Selvi, Aras
    Belbasi, Mohammad Reza
    Haugh, Martin B.
    Wiesemann, Wolfram
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,