Influence diagnostics in Birnbaum-Saunders nonlinear regression models

被引:24
|
作者
Lemonte, Artur J. [1 ]
Patriota, Alexandre G. [1 ]
机构
[1] Univ Sao Paulo, Dept Estat, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Birnbaum-Saunders distribution; fatigue life distribution; influence diagnostic; generalized leverage; lifetime data; local influence; maximum-likelihood estimation; LOCAL INFLUENCE; LINEAR-MODELS; INFERENCE; FAMILY;
D O I
10.1080/02664761003692357
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.
引用
下载
收藏
页码:871 / 884
页数:14
相关论文
共 50 条
  • [1] Birnbaum-Saunders nonlinear regression models
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4441 - 4452
  • [2] Diagnostics in multivariate generalized Birnbaum-Saunders regression models
    Marchant, Carolina
    Leiva, Victor
    Cysneiros, Francisco Jose A.
    Vivanco, Juan F.
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (15) : 2829 - 2849
  • [3] Diagnostic procedures in Birnbaum-Saunders nonlinear regression models
    Hernando Vanegas, Luis
    Marina Rondon, Luz
    Cysneiros, Francisco Jose A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1662 - 1680
  • [4] Bartlett corrections in Birnbaum-Saunders nonlinear regression models
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    Moreno, German
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (06) : 927 - 935
  • [5] Asymptotic skewness in Birnbaum-Saunders nonlinear regression models
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (9-10) : 892 - 898
  • [6] Birnbaum-Saunders spatial regression models: Diagnostics and application to chemical data
    Garcia-Papani, Fabiana
    Leiva, Victor
    Uribe-Opazo, Miguel A.
    Aykroyd, Robert G.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 177 : 114 - 128
  • [7] Birnbaum-Saunders frailty regression models: Diagnostics and application to medical data
    Leao, Jeremias
    Leiva, Victor
    Saulo, Helton
    Tomazella, Vera
    BIOMETRICAL JOURNAL, 2017, 59 (02) : 291 - 314
  • [8] Bayesian inference for the Birnbaum-Saunders nonlinear regression model
    Farias, Rafael B. A.
    Lemonte, Artur J.
    STATISTICAL METHODS AND APPLICATIONS, 2011, 20 (04): : 423 - 438
  • [9] Influence diagnostics in log-Birnbaum-Saunders regression models
    Galea, M
    Leiva-Sánchez, V
    Paula, GA
    JOURNAL OF APPLIED STATISTICS, 2004, 31 (09) : 1049 - 1064
  • [10] Birnbaum-Saunders functional regression models for spatial data
    Martinez, Sergio
    Giraldo, Ramon
    Leiva, Victor
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (10) : 1765 - 1780