Influence diagnostics in Birnbaum-Saunders nonlinear regression models

被引:24
|
作者
Lemonte, Artur J. [1 ]
Patriota, Alexandre G. [1 ]
机构
[1] Univ Sao Paulo, Dept Estat, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Birnbaum-Saunders distribution; fatigue life distribution; influence diagnostic; generalized leverage; lifetime data; local influence; maximum-likelihood estimation; LOCAL INFLUENCE; LINEAR-MODELS; INFERENCE; FAMILY;
D O I
10.1080/02664761003692357
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.
引用
下载
收藏
页码:871 / 884
页数:14
相关论文
共 50 条
  • [21] Nonlinear regression models based on the normal mean-variance mixture of Birnbaum-Saunders distribution
    Naderi, Mehrdad
    Arabpour, Alireza
    Lin, Tsung-I
    Jamalizadeh, Ahad
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (03) : 476 - 485
  • [22] Nonlinear regression models based on the normal mean-variance mixture of Birnbaum-Saunders distribution
    Mehrdad Naderi
    Alireza Arabpour
    Tsung-I Lin
    Ahad Jamalizadeh
    Journal of the Korean Statistical Society, 2017, 46 : 476 - 485
  • [23] Influence diagnostics in log-Birnbaum-Saunders regression models with censored data
    Leiva, Victor
    Barros, Michelli
    Paula, Gilberto A.
    Galea, Manuel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 5694 - 5707
  • [24] A new look at the Birnbaum-Saunders regression model
    Bourguignon, Marcelo
    Gallardo, Diego, I
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2022, 38 (06) : 935 - 951
  • [25] Extreme value Birnbaum-Saunders regression models applied to environmental data
    Leiva, Victor
    Ferreira, Marta
    Gomes, M. Ivette
    Lillo, Camilo
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2016, 30 (03) : 1045 - 1058
  • [26] A robust multivariate Birnbaum-Saunders regression model
    Romeiro, Renata G.
    Vilca, Filidor
    Balakrishnan, N.
    Zeller, Camila Borelli
    STATISTICS, 2020, 54 (05) : 1094 - 1123
  • [27] Diagnostics analysis for log-Birnbaum-Saunders regression models
    Xie, Feng-Chang
    Wei, Bo-Cheng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4692 - 4706
  • [28] On Birnbaum-Saunders inference
    Cysneiros, Audrey H. M. A.
    Cribari-Neto, Francisco
    Araujo, Carlos A. G., Jr.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (11) : 4939 - 4950
  • [29] [Invited tutorial] Birnbaum-Saunders regression models: a comparative evaluation of three approaches
    Dasilva, Alan
    Dias, Renata
    Leiva, Victor
    Marchant, Carolina
    Saulo, Helton
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (14) : 2552 - 2570
  • [30] Estimation in generalized bivariate Birnbaum-Saunders models
    Saulo, Helton
    Balakrishnan, N.
    Zhu, Xiaojun
    Gonzales, Jhon F. B.
    Leao, Jeremias
    METRIKA, 2017, 80 (04) : 427 - 453