Learning vector quantization for classifying astronomical objects

被引:12
|
作者
Zhang, YX [1 ]
Zhao, YH [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
来源
关键词
method : data analysis; method : statistical; catalogs;
D O I
10.1088/1009-9271/3/2/183
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The sizes of astronomical surveys in different wavebands are increasing rapidly. Therefore, automatic classification of objects is becoming ever more important. We explore the performance of learning vector quantization (LVQ) in classifying multi-wavelength data. Our analysis concentrates on separating active sources from non-active ones. Different classes of X-ray emitters populate distinct regions of a multidimensional parameter space. In order to explore the distribution of various objects in a multidimensional parameter space, we positionally cross-correlate the data of quasars, BL Lacs, active galaxies, stars and normal galaxies in the optical, X-ray and infrared bands. We then apply LVQ to classify them with the obtained data. Our results show that LVQ is an effective method for separating AGNs from stars and normal galaxies with multi-wavelength data.
引用
下载
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [41] Expansive and Competitive Learning for Vector Quantization
    J. Muñoz-Perez
    J. A. Gomez-Ruiz
    E. Lopez-Rubio
    M. A. Garcia-Bernal
    Neural Processing Letters, 2002, 15 : 261 - 273
  • [42] Profiling Astronomical Objects Using Unsupervised Learning Approach
    Sangpetch, Theerapat
    Boongoen, Tossapon
    Iam-On, Natthakan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1641 - 1655
  • [43] Functional relevance learning in generalized learning vector quantization
    Kaestner, Marika
    Hammer, Barbara
    Biehl, Michael
    Villmann, Thomas
    NEUROCOMPUTING, 2012, 90 : 85 - 95
  • [44] Expansive competitive learning for kernel vector quantization
    Bacciu, Davide
    Starita, Antonina
    PATTERN RECOGNITION LETTERS, 2009, 30 (06) : 641 - 651
  • [45] Adaptive Relevance Matrices in Learning Vector Quantization
    Schneider, Petra
    Biehl, Michael
    Hammer, Barbara
    NEURAL COMPUTATION, 2009, 21 (12) : 3532 - 3561
  • [46] Learning Vector Quantization for breast cancer prediction
    Enachescu, Denis
    Enachescu, Cornelia
    2005 Portuguese Conference on Artificial Intelligence, Proceedings, 2005, : 177 - 180
  • [47] A New generalized learning vector quantization algorithm
    Zhou, SS
    Zhou, LH
    Liu, WG
    SECOND INTERNATION CONFERENCE ON IMAGE AND GRAPHICS, PTS 1 AND 2, 2002, 4875 : 111 - 117
  • [48] LEARNING VECTOR QUANTIZATION FOR THE PROBABILISTIC NEURAL NETWORK
    BURRASCANO, P
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (04): : 458 - 461
  • [50] Fuzzy-kernel learning vector quantization
    Zhang, DQ
    Chen, SC
    Zhou, ZH
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 180 - 185