Learning vector quantization for classifying astronomical objects

被引:12
|
作者
Zhang, YX [1 ]
Zhao, YH [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
来源
关键词
method : data analysis; method : statistical; catalogs;
D O I
10.1088/1009-9271/3/2/183
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The sizes of astronomical surveys in different wavebands are increasing rapidly. Therefore, automatic classification of objects is becoming ever more important. We explore the performance of learning vector quantization (LVQ) in classifying multi-wavelength data. Our analysis concentrates on separating active sources from non-active ones. Different classes of X-ray emitters populate distinct regions of a multidimensional parameter space. In order to explore the distribution of various objects in a multidimensional parameter space, we positionally cross-correlate the data of quasars, BL Lacs, active galaxies, stars and normal galaxies in the optical, X-ray and infrared bands. We then apply LVQ to classify them with the obtained data. Our results show that LVQ is an effective method for separating AGNs from stars and normal galaxies with multi-wavelength data.
引用
下载
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [21] Learning vector quantization for multimodal data
    Hammer, B
    Strickert, M
    Villmann, T
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 370 - 376
  • [22] Variants of recurrent learning vector quantization
    Ravichandran, Jensun
    Kaden, Marika
    Villmann, Thomas
    NEUROCOMPUTING, 2022, 502 : 27 - 36
  • [23] EEG CLASSIFICATION BY LEARNING VECTOR QUANTIZATION
    FLOTZINGER, D
    KALCHER, J
    PFURTSCHELLER, G
    BIOMEDIZINISCHE TECHNIK, 1992, 37 (12): : 303 - 309
  • [24] Robust vector quantization by competitive learning
    Buhmann, JM
    Hofmann, T
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 139 - 142
  • [25] sklvq: Scikit Learning Vector Quantization
    van Veen, Rick
    Biehl, Michael
    De Vries, Gert-Jan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [26] Relational Extensions of Learning Vector Quantization
    Hammer, Barbara
    Schleif, Frank-Michael
    Zhu, Xibin
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 481 - 489
  • [27] Dual Weight Learning Vector Quantization
    Lv, Chuanfeng
    An, Xing
    Liu, Zhiwen
    Zhao, Qiangfu
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1723 - +
  • [28] Noise Fuzzy Learning Vector Quantization
    Wu, Xiao-Hong
    Wu, Bin
    Zhao, Jie-Wen
    ADVANCED MEASUREMENT AND TEST, PARTS 1 AND 2, 2010, 439-440 : 367 - +
  • [29] Learning algorithms with boosting for Vector Quantization
    Miyajima, Hiromi
    Shigei, Noritaka
    Maeda, Michiharu
    Hosoda, Shuji
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 352 - 356
  • [30] sklvq: Scikit learning vector quantization
    van Veen, Rick
    Biehl, Michael
    de Vries, Gert-Jan
    2021, Microtome Publishing (22)