ON SOME ROOT BEHAVIORS OF CERTAIN SUMS OF POLYNOMIALS

被引:0
|
作者
Chong, Han-Kyol [1 ]
Kim, Seon-Hong [1 ]
机构
[1] Sookmyung Womens Univ, Dept Math, Seoul 140742, South Korea
关键词
sums of polynomials; roots; root squeezing; ZEROS;
D O I
10.4134/BKMS.2016.53.1.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that no two of the roots of the polynomial equation (1) Pi(n)(l=1) (x - r1) + Pi(n)(l=1) (x + r1) = 0, where 0 < r(1) <= r(2) <= ... <= r(n), can be equal and all of its roots lie on the imaginary axis. In this paper we show that for 0 < h < r(k), the roots of (x - r(k) + h) Pi(n)(l=1l not equal k) (x - r(1)) + (x + r(k) - h) Pi(n)(l=1l not equal k) (x + r(1)) = 0 and the roots of (1) in the upper half-plane lie alternatively on the imaginary axis.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条