ON SOME ROOT BEHAVIORS OF CERTAIN SUMS OF POLYNOMIALS

被引:0
|
作者
Chong, Han-Kyol [1 ]
Kim, Seon-Hong [1 ]
机构
[1] Sookmyung Womens Univ, Dept Math, Seoul 140742, South Korea
关键词
sums of polynomials; roots; root squeezing; ZEROS;
D O I
10.4134/BKMS.2016.53.1.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that no two of the roots of the polynomial equation (1) Pi(n)(l=1) (x - r1) + Pi(n)(l=1) (x + r1) = 0, where 0 < r(1) <= r(2) <= ... <= r(n), can be equal and all of its roots lie on the imaginary axis. In this paper we show that for 0 < h < r(k), the roots of (x - r(k) + h) Pi(n)(l=1l not equal k) (x - r(1)) + (x + r(k) - h) Pi(n)(l=1l not equal k) (x + r(1)) = 0 and the roots of (1) in the upper half-plane lie alternatively on the imaginary axis.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [31] The root distributions of Ehrhart polynomials of free sums of reflexive polytopes
    Hachimori, Masahiro
    Higashitani, Akihiro
    Yamada, Yumi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03): : 1 - 17
  • [32] Some Identities Involving Certain Hardy Sums and General Kloosterman Sums
    Zhang, Huifang
    Zhang, Tianping
    MATHEMATICS, 2020, 8 (01)
  • [33] CERTAIN COMBINATORIC CONVOLUTION SUMS ARISING FROM BERNOULLI AND EULER POLYNOMIALS
    Kim, Daeyeoul
    Sarp, Umit
    Ikikardes, Sebahattin
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 311 - 330
  • [34] Some results for sums of products of Chebyshev and Legendre polynomials
    Yuan He
    Advances in Difference Equations, 2019
  • [35] Some results for sums of products of Chebyshev and Legendre polynomials
    He, Yuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [36] SOME ARITHMETIC PROPERTIES OF THE MINIMAL POLYNOMIALS OF GAUSS SUMS
    WAN, DQ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (02) : 225 - 228
  • [37] NOTE ON SOME FORMULAS FOR WEIGHTED SUMS OF ZONAL POLYNOMIALS
    SUGIURA, N
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (02): : 768 - &
  • [38] THE ROOT SEPARATION OF POLYNOMIALS AND SOME APPLICATIONS
    PETKOVIC, M
    MIGNOTTE, M
    TRAJKOVIC, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (07): : 551 - 561
  • [39] SUMS OF POLYNOMIALS AS PERMUTATION POLYNOMIALS
    NIEDERRE.HG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 360 - &
  • [40] SOME PROPERTIES OF A CERTAIN SET OF INTERPOLATING POLYNOMIALS
    LEEMING, DJ
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (04): : 529 - 537