ON SOME ROOT BEHAVIORS OF CERTAIN SUMS OF POLYNOMIALS

被引:0
|
作者
Chong, Han-Kyol [1 ]
Kim, Seon-Hong [1 ]
机构
[1] Sookmyung Womens Univ, Dept Math, Seoul 140742, South Korea
关键词
sums of polynomials; roots; root squeezing; ZEROS;
D O I
10.4134/BKMS.2016.53.1.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that no two of the roots of the polynomial equation (1) Pi(n)(l=1) (x - r1) + Pi(n)(l=1) (x + r1) = 0, where 0 < r(1) <= r(2) <= ... <= r(n), can be equal and all of its roots lie on the imaginary axis. In this paper we show that for 0 < h < r(k), the roots of (x - r(k) + h) Pi(n)(l=1l not equal k) (x - r(1)) + (x + r(k) - h) Pi(n)(l=1l not equal k) (x + r(1)) = 0 and the roots of (1) in the upper half-plane lie alternatively on the imaginary axis.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [1] Root and critical point behaviors of certain sums of polynomials
    Seon-Hong Kim
    Sung Yoon Kim
    Tae Hyung Kim
    Sangheon Lee
    Proceedings - Mathematical Sciences, 2018, 128
  • [2] Root and critical point behaviors of certain sums of polynomials
    Kim, Seon-Hong
    Kim, Sung Yoon
    Kim, Tae Hyung
    Lee, Sangheon
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [3] Zeros of certain sums of two polynomials
    Kim, SH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) : 239 - 250
  • [4] ROOT POWER SUMS AND CHEBYSHEV POLYNOMIALS
    Capparelli, Stefano
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (01) : 59 - 74
  • [5] SOME CHARACTER SUMS OF THE POLYNOMIALS
    Zhang, Wenpeng
    Zhang, Jiafan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 48 (01): : 37 - 48
  • [6] SOME POLYNOMIALS ASSOCIATED WITH DEDEKIND SUMS
    CARLITZ, L
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1975, 26 (3-4): : 311 - 319
  • [7] On the Chebyshev Polynomials and Some of Their Reciprocal Sums
    Zhang, Wenpeng
    Han, Di
    SYMMETRY-BASEL, 2020, 12 (05):
  • [8] Some sums over irreducible polynomials
    Speyer, David E.
    ALGEBRA & NUMBER THEORY, 2017, 11 (05) : 1231 - 1241
  • [9] Positivity of certain sums over Jacobi kernel polynomials
    Pillwein, Veronika
    ADVANCES IN APPLIED MATHEMATICS, 2008, 41 (03) : 365 - 377
  • [10] Some results on sums of products of Bernoulli polynomials and Euler polynomials
    Wang, Weiping
    RAMANUJAN JOURNAL, 2013, 32 (02): : 159 - 184